首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   56篇
  国内免费   37篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   15篇
  2018年   33篇
  2017年   19篇
  2016年   15篇
  2015年   16篇
  2014年   65篇
  2013年   68篇
  2012年   58篇
  2011年   83篇
  2010年   53篇
  2009年   58篇
  2008年   62篇
  2007年   47篇
  2006年   37篇
  2005年   35篇
  2004年   28篇
  2003年   27篇
  2002年   22篇
  2001年   30篇
  2000年   18篇
  1999年   26篇
  1998年   16篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1978年   1篇
排序方式: 共有872条查询结果,搜索用时 19 毫秒
61.
BACKGROUND: Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS: Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS: Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS: Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.  相似文献   
62.
The orange-spotted grouper Epinephelus coioides is a protogynous hermaphroditic fish, but the physiological basis of its sex change remains largely unknown. In the present study, the 2-year-old orange-spotted grouper was induced to change sex precociously by oral administration of 17alpha-methyltestosterone (MT, 50 mg/Kg diet, twice a day at daily ration of 5% bodyweight) for 60 days. The serum testosterone levels were significantly elevated after MT treatment for 20 and 40 days as compared to control, but the levels of serum estradiol (E(2)) remained unchanged. The expression of P450aromA in the gonad significantly decreased after MT treatment for 20, 40, and 60 days. Accordingly, the enzyme activity of gonadal aromatase was also lower. The expression of FSHbeta subunit in the pituitary was significantly decreased after MT treatment for 20 days, but returned to the control levels after 40 and 60 days; however, the expression of LHbeta subunit was not altered significantly by MT treatment. The expression of FTZ-F1 in the gonad also decreased significantly in response to MT treatment for 40 and 60 days, but its expression in the pituitary was not altered significantly. Interestingly, when tested in vitro on ovarian fragments, MT had no direct effect on the expression of P450aromA and FTZ-F1 as well as the activity of gonadal aromatase, suggesting that the inhibition of gonadal P450aromatase and FTZ-F1 by MT may be mediated at upper levels of the brain-pituitary-gonadal axis. Taken together, these results indicated that FSH, P450aromA, FTZ-F1, and serum testosterone are associated with the MT-induced sex change of the orange-spotted grouper, but the cause-effect relationship between these factors and sex change in this species remains to be characterized.  相似文献   
63.
In cattle, most evidence suggests that granulosa cells express LH receptors (LHR) after (or as) the follicle becomes dominant, however there is some suggestion that granulosa cells from smaller pre-dominant follicles may express several LHR mRNA splice variants. The objective of this study was to measure LHR expression in bovine follicles of defined size and steroidogenic ability, and in granulosa cells from small follicles (<6 mm diameter) undergoing differentiation in vitro. Semiquantitative RT-PCR demonstrated that LHR mRNA was undetectable in granulosa cells of follicles <7 mm diameter (nondominant follicles), and increased with follicle diameter in follicles >7 mm diameter. Splice variants with deletions of exon 10 and part of exon 11 were detected as previously described, and we detected a novel splice variant with a deletion of exon 3. Cultured granulosa cells contained LHR mRNA, but with significantly greater amounts of variants with deletions of exon 10 and/or exon 11 compared with cells from dominant follicles. FSH increased the abundance of some but not all LHR mRNA splice variants in cultured granulosa cells. The addition of LH to cultured cells did not increase progesterone secretion, despite the presence of LHR mRNA. Collectively, these data suggest that granulosa cells do not acquire functional LHR until follicle dominance occurs.  相似文献   
64.
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.  相似文献   
65.
66.
An improved RT‐PCR was developed and validated for the detection of Yam mild mosaic virus (YMMV). Sequences of the coat protein core region of 19 Chinese isolates were obtained, and analysis indicated the presence of different genetic variants. Phylogenetic analyses showed that the Chinese isolates were divided into two distinct clusters. Complete genomic sequences of two distinct Chinese variants were determined to be 9527 and 9529 nucleotides long, excluding the 3′ poly (A) tail. Their genomic structure and organization were virtually identical to that of a Brazilian isolate. The two variants shared identity of 87.3% to one another and 83.9–84.6% to the Brazilian variant at the genomic sequence level. Phylogenetic analyses supported that they represented two distinct YMMV lineages.  相似文献   
67.
68.
Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus are economically important viruses infecting fruit tree species worldwide. To evaluate the occurrence of these pome fruit viruses in Latvia, a large‐scale survey was carried out in 2007. Collected samples were tested for infection by DAS ELISA and multiplex RT‐PCR. The accuracy of the detection of the viruses in multiplex RT‐PCR was confirmed by sequencing amplified PCR fragments. The results showed a wide occurrence of viruses in apple and pear commercial orchards established from non‐tested planting material. More than 89% of the tested apple trees and more than 60% of pear trees were infected with one or more pome fruit viruses. Analyses showed that the high occurrence of viruses in several apple cultivars is due to the propagation of infected clonal rootstocks and scions from infected mother trees. Sequence analyses targeting the 3′‐terminal region of the tested viruses showed various degrees of genetic diversity within respective virus isolates. This is the first report of the occurrence of ACLSV, ASGV and ASPV in apple and pear trees in Latvia and demonstrates their genetic diversity in different host genotypes.  相似文献   
69.
During a virus survey in autumn 2007 and spring 2008 of two Tunisian olive mother blocks, 175 olive samples were collected from 19 different cultivars and tested by RT‐PCR for the presence of Arabis mosaic virus (ArMV), Cherry leaf roll virus (CLRV), Cucumber mosaic virus (CMV), Olive latent ringspot virus (OLRSV), Olive latent virus 1 (OLV‐1), Olive latent virus 2 (OLV‐2), Olive leaf yellowing‐associated virus (OLYaV) and Strawberry latent ringspot virus (SLRSV), using specific sets of primers. The PCR‐negative samples were also subjected to dsRNA and mechanical transmission tests. PCR results indicated that c. 86% of the trees were infected with at least one virus, whereas visible bands were shown by 3 of 24 PCR‐negative samples in dsRNA analysis. OLYaV was the most prevalent virus (49.1%), followed by OLV‐1 (34.3%), CMV (25.7%), OLRSV (16.6%), CLRV (13.1%), SLRSV (7.4%) and OLV‐2 (6.9%), whereas ArMV was not detected. Very high infection rates were found in the two main oil cvs. Chemlali (84.6%) and Chétoui (86.9%).  相似文献   
70.
The sigma-2 (σ2) receptor has been suggested to be a promising target for pharmacological interventions to curb tumor progression. Development of σ2-specific ligands, however, has been hindered by lack of understanding of molecular determinants that underlie selective ligand-σ2 interactions. Here we have explored effects of electron donating and withdrawing groups on ligand selectivity for the σ2 versus σ1 receptor using new benzamide-isoquinoline derivatives. The electron-donating methoxy group increased but the electron-withdrawing nitro group decreased σ2 affinity. In particular, an extra methoxy added to the para-position (5e) of the benzamide phenyl ring of 5f dramatically improved (631 fold) the σ2 selectivity relative to the σ1 receptor. This para-position provided a sensitive site for effective manipulation of the sigma receptor subtype selectivity using either the methoxy or nitro substituent. Our study provides a useful guide for further improving the σ2-over-σ1 selectivity of new ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号