首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   27篇
  国内免费   37篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   9篇
  2020年   20篇
  2019年   14篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   19篇
  2013年   46篇
  2012年   19篇
  2011年   17篇
  2010年   18篇
  2009年   20篇
  2008年   16篇
  2007年   20篇
  2006年   15篇
  2005年   19篇
  2004年   14篇
  2003年   24篇
  2002年   28篇
  2001年   18篇
  2000年   20篇
  1999年   10篇
  1998年   14篇
  1997年   20篇
  1996年   7篇
  1995年   9篇
  1994年   17篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1977年   1篇
  1973年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
511.
512.
实验了不同大蒜汁浓度(0、2、4、8、16、32 mg/L)对菲律宾蛤仔受精卵孵化率,幼虫生长、存活、变态及稚贝生长与存活的影响,总结了室内大规模人工育苗过程中大蒜防病效果。结果表明:随着大蒜汁浓度的增加,孵化率降低;大蒜汁浓度达到16mg/L,胚胎发育延迟;达到32mg/L,受精卵不能孵化为正常幼虫。浮游期间,幼虫的生长受大蒜汁抑制,幼虫的存活率则随着大蒜汁浓度增加先升高后降低;幼虫的变态率随着大蒜汁浓度的增加先升高后降低,以16mg/L为最适浓度;变态规格随着大蒜汁浓度增加而减小。室内培育期间,稚贝生长与存活随着大蒜汁浓度的增加先升高后降低,以8mg/L为最适浓度;室内大规模人工育苗过程中,使用浓度为8-10mg/L大蒜汁可以起到较好的防病效果。  相似文献   
513.
饶小珍  林岗  张殿彩  陈寅山  许友勤 《生态学报》2010,30(23):6530-6537
龟足(Capitulum mitella Linnaeus)在我国主要分布于长江口以南海浪剧烈冲击的暴露型岩相海岸的中、高潮区,是一种颇具养殖潜力和市场前景的新品种。研究温度(24、27、30、33℃)和盐度(28,31,34)对龟足胚胎发育和幼虫生长的协同影响,可为龟足的人工育苗提供依据。结果如下(1):33℃-28温盐度组合胚胎发育时间最短144h,27℃-28温盐度组合胚胎相对孵化率最高。温度与盐度对胚胎发育时间没有显著影响;但温度和盐度对胚胎孵化率有极显著影响,温度与盐度间的交互作用显著。胚胎发育最适宜的温盐度组合是27℃-28。(2):27℃的3个盐度组、30℃-31温盐度组合无节幼虫持续时间最短。在同一盐度条件下以27℃的存活率较高,在同一温度条件下以盐度31的存活率较高,其中以27℃-31温盐度组合的存活率最高;存活率1和存活率2分别高达99.0%、90.7%。27℃-28、27℃-31温盐度组合变态率最高,变态率分别为81.8%、73.7%。34高盐组幼虫的存活率和变态率均很低甚至为零。温度和盐度对幼虫存活率和变态率有极显著影响,两者的交互作用极为显著。综合无节幼虫持续时间、存活和变态情况,27℃-31温盐度组合为幼虫生长发育的最佳组合条件。龟足胚胎发育、无节幼虫的生长和变态对温度盐度的敏感性有所不同,这是由龟足的自身繁殖特点及生活环境决定的。  相似文献   
514.
515.
This study examines the consequences of variation in the laying and hatching date for the time of metamorphosis in the common frog Rana temporaria . Field data are presented showing that eggs laid early tend to take longer to develop. Thus, the time advantage for early eggs is reduced at the time of hatching. There was an among-year variation in this phenomenon; it was not manifest in a phenologically late year. Also, field data revealed that mortality due to pond freezing is a real risk for early laid eggs. Finally, two experiments in tanks analyse the effects of hatching date variation for the time of metamorphosis. (1) When hatching was experimentally delayed by 7 or 11 days, this resulted in later metamorphosis, however, by only 2 and 5 days, respectively. (2a) When tadpoles from the same pond that naturally hatched at different times were compared, it was found that a hatching time difference of 6 days resulted in later metamorphosis by 2 days only. (2b) A comparison of tadpoles from two different ponds that hatched 11 days apart also resulted in only 2 days' difference in metamorphosis. In this case, the later but faster developing tadpoles metamorphosed at a smaller size. I suggest that eggs from these two ponds differed genetically in the growth and development strategy. Despite the obvious risks, and the moderate gain in terms of early metamorphosis, frogs breed dangerously early in spring. Possible reasons for this are discussed. These include external selective forces that promote early metamorphosis (also at a high cost), within-pond competition among tadpoles with an advantage for early and large tadpoles and finally factors relating to mate choice at the breeding site.  相似文献   
516.
ABSTRACT. We attempt to extend knowledge of anuran Eimeria , and to provide a model for a complex approach to studies on coccidia. New host and geographic records of coccidia in European Anura are provided. In the second part, Eimeria ranae Dobell, 1909 is redescribed from European terrestrial frogs of the genus Rana based on light microscopic and ultrastructural data on both exogenous and endogenous developmental stages, host specificity, and molecular phylogenetic data. Results of experimental transmissions show for the first time that the host specificity of E. ranae is restricted to the genus Rana and that isolates from tadpoles and adults are conspecific. Disappearance of infection during metamorphosis was confirmed experimentally, suggesting that infections in adults result from reinfections. Poikilotherm-host Eimeria species possessing a Stieda body (SB) are for the first time included in a molecular phylogenetic analysis. Eimeria ranae and Eimeria arnyi from a colubrid snake form together a well-supported clade, basal to other SB-bearing coccidia. The other analysed reptile–host eimerians, Eimeria tropidura and Choleoeimeria sp., which possess bivalved sporocysts and lack a SB, represent a distinct basal lineage of the eimeriid clade. The third part of the article reviews anuran-host Eimeria . Three distinct oocyst morphotypes, apparently correlating with the character of endogenous development, are recognized and characterized among anuran eimeriids.  相似文献   
517.
1. Insects lack the acquired immune system of vertebrates, but there is some evidence that insect immunity can be primed against an encountered pathogen to mitigate the intensity of future infections within a life stage. 2. Many invertebrates have multiple life‐history stages separated by complete metamorphosis, but different life stages can often be infected by the same pathogens, and the potential loss of immune priming during metamorphosis could therefore have detrimental effects on the host. Evidence that invertebrate immune priming can persist through metamorphosis is still missing, and consequently it is unclear how host–parasite interactions change across different life‐history stages in the context of infection history. 3. By experimentally manipulating the infection history of the flour beetle Tribolium confusum, we show that intestinal gregarine parasite infections during the larval stage reduced parasite load in adults, demonstrating that a host‐controlled mechanism for parasite resistance can persist through complete metamorphosis in insects. 4. Infections reduced larval developmental rates and increased host mortality but only during the crucial metamorphic stage, indicating that parasites impact multiple life stages. In general, our results demonstrate that invertebrates can show surprisingly robust immune priming despite dramatic physiological changes and protect hosts across completely different life‐history stages.  相似文献   
518.
Abstract. Light and scanning electron microscopy were used to examine protoconch form in eight species of planktotrophic heterobranch larvae, including four nudibranch species with a coiled (type 1) protoconch, two nudibranch species with an inflated (type 2) protoconch, and two cephalaspid species with a coiled protoconch. The coiled protoconchs of the cephalaspids and nudibranchs have a similar form at hatching, and shell growth up to metamorphic competence is hyperstrophic. Shell added to coiled protoconchs during the larval stage overgrows all but the left wall of the initial protoconch that exists at hatching. The entire protoconch of cephalaspids, including overgrown areas, is retained through metamorphosis. However, during later larval development in nudibranchs with a coiled protoconch, overgrown shell is completely removed by dissolution. As a result, regardless of whether nudibranch larvae hatch with an inflated or coiled protoconch type, the protoconch is a large, hollow cup at metamorphic competence. The protoconch of nudibranchs is shed at metamorphosis and absence of a post-metamorphic shell is correlated with absence of visceral coiling in this gastropod group. Internal dissolution of the coiled protoconch in nudibranchs allows the left digestive gland to uncoil prior to metamorphic shell loss. Retention of overgrown protoconch whorls in cephalaspids allows the attachment plaque of the pedal muscle to migrate onto the parietal lip of the post-metamorphic shell. Release from this constraint in nudibranchs, in which the larval pedal muscles and the entire protoconch are lost at metamorphosis, may have permitted internal protoconch dissolution and precocious uncoiling of the visceral mass, as well as evolutionary emergence of the inflated larval shell type.  相似文献   
519.
Labial glands of the tobacco hornworm Manduca sexta (Lepidoptera: Sphingiidae), homologues of Drosophila salivary glands, undergo programmed cell death (PCD) in a 4-day period during larva-to-pupa metamorphosis. The programmed death of the labial gland was examined by electron microscopy and measurement of protein synthesis as well as measurement of DNA synthesis, end-labeling of single strand breaks, and pulsed-field gel electrophoresis. One of the earliest changes observed is a sharp drop in synthesis of most proteins, coupled with synthesis of a glycine-rich protein, reminiscent of silk-like proteins. From a morphological standpoint, during the earliest phases the most prominent changes are the formation of small autophagic vacuoles containing ribosomes and an apparent focal dissolution of the membranes of the endoplasmic reticulum, whereas later changes include differing destruction at the lumenal and basal surfaces of the cell and erosion of the basement membrane. By the fourth day of metamorphosis, individual cells become rapidly vacuolated in a cell-independent manner. In the vacuolated cells on day 3, chromatin begins to coalesce. It is at this period that unequivocal nucleosomal ladders are seen and end-labeling in situ or electrophoretic techniques document single or double-strand breaks, respectively. DNA synthesis ceases shortly after the molt to the fifth instar, as detected by incorporation of tritiated thymidine and weak TUNEL labeling. Large size fragments of DNA are seen shortly after DNA synthesis ceases and thence throughout the instar, raising the possibility of potential limitations built into the cells before their final collapse. Dev. Genet. 21:249–257, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
520.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号