首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1098篇
  免费   141篇
  国内免费   652篇
  2024年   6篇
  2023年   29篇
  2022年   33篇
  2021年   45篇
  2020年   43篇
  2019年   41篇
  2018年   35篇
  2017年   51篇
  2016年   51篇
  2015年   38篇
  2014年   59篇
  2013年   61篇
  2012年   59篇
  2011年   70篇
  2010年   65篇
  2009年   88篇
  2008年   93篇
  2007年   87篇
  2006年   77篇
  2005年   63篇
  2004年   73篇
  2003年   76篇
  2002年   95篇
  2001年   88篇
  2000年   62篇
  1999年   40篇
  1998年   41篇
  1997年   61篇
  1996年   58篇
  1995年   42篇
  1994年   22篇
  1993年   33篇
  1992年   24篇
  1991年   9篇
  1990年   25篇
  1989年   17篇
  1988年   10篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1955年   1篇
排序方式: 共有1891条查询结果,搜索用时 31 毫秒
51.
航天搭载对小桐子种子萌发及幼苗生长的影响   总被引:3,自引:0,他引:3  
研究了航天搭载对两个种源地小桐子种子萌发及幼苗生长的影响.结果表明:航天搭载降低了种子的活力;在幼苗生长方面,航天搭载对小桐子幼苗的成苗率没有显著影响,航天搭载扩大了版纳种源当代幼苗株高及地径的变异范围,对元阳种当代幼苗的株高及地径影响不明显.这说兑叫不同种源地的植物对太空环境的反应有所不同.本研究为航天技术有效的运用于小桐子诱变育种提供依据.  相似文献   
52.
3种松树林林分改造树种的生长格局   总被引:2,自引:0,他引:2  
对3 种松林下的黎蒴、白花油茶、竹节树苗木的生长进行了研究.3 种苗木的地径和冠幅生长量以及黎蒴和油茶的树高生长量排序为湿地松林分>有凋落物加勒比松林分>无凋落物加勒比松林分,而竹节树在有凋落物加勒比松林下的树高生长略大于湿地松林,二者显著大于无凋落物加勒比松林.无凋落物的加勒比松林因为去除地表凋落物后减少了养分的输入,土壤有机质和氮含量减少,导致苗木生长下降.总体来看,竹节树的地径和冠幅的生长量最大,黎蒴树高的生长量最大,二者是改造松林的优良树种,而油茶生长慢.  相似文献   
53.
生物炭调控盐胁迫下水稻幼苗耐盐性能   总被引:1,自引:0,他引:1  
土壤盐渍化降低土壤生产力。探索生物炭对盐胁迫下水稻幼苗耐盐性能的影响,对调控盐渍区水稻生产潜力具有重要意义。本研究通过生物炭介入盐胁迫稻田土壤的盆栽试验,调查了生物炭对盐胁迫下土壤环境和水稻幼苗耐盐性能的影响。盐胁迫设置4个水平,分别为0 g NaCl·kg-1土(S0),1 g NaCl·kg-1土(S1),2 g NaCl·kg-1土(S2),3 g NaCl·kg-1土(S3)。生物炭设置2个水平,分别为0 g生物炭·kg-1土(C0),3 g生物炭·kg-1土(C1)。结果表明:生物炭介入盐胁迫土壤,显著提高了水稻幼苗地上部干物重,有效改善了水稻幼苗农艺性状,显著提高了水稻幼苗茎秆中全钾含量,显著提高水稻幼苗钾钠比79.61%,提高了水稻幼苗耐盐性。生物炭介入也对水稻幼苗抗氧化性能有改善作用,显著降低了水稻幼苗中丙二醛含量,平均显著降低14.25%,抑制膜脂过氧化作用,提高抗氧化能力,减轻盐胁迫对水稻幼苗的伤害。水稻幼苗收获后土壤中水溶性氯离子和水溶性钠离子含量在生物炭介入条件下分别显著降低9.13%、17.77%。因此,添加适量生物炭能有效降低土壤水溶性盐含量,改善土壤盐胁迫环境,提升水稻对盐渍土壤的适应能力。  相似文献   
54.
为了揭示珍稀濒危植物长白松(Pinus sylvestris var. sylvestriformis)天然种群生存压力状况,在全面调查长白山国家级自然保护区长白松分布的基础上,基于邻体干扰模型,引入树高、冠幅、方位等因子,提出3种生存压力指数:个体生存压力指数、种群生存压力指数和群落生存压力指数,分析天然长白松所处6种群落类型中的生存压力。结果表明:长白松承受群落生存压力(PI)从大到小依次为:白桦-臭冷杉群落(PI=21.532)、红松-长白松群落(PI=14.185)、白桦群落(PI=13.262)、臭冷杉-长白松群落(PI=8.752)、长白落叶松-鱼鳞云杉群落(PI=7.780)和蒙古栎群落(PI=5.440)。多重比较单向方差分析表明,6种群落类型中长白松生存压力总体上差异明显,白桦-臭冷杉群落中长白松生存压力最大,显著高于其他5种群落;竞争树种主要为长白落叶松、红松、长白松、山杨和白桦,这5个树种生存压力大小占群落生存压力的87%;红松-长白松群落和白桦群落中长白松生存压力无明显差异,但显著高于臭冷杉-长白松群落、长白落叶松-鱼鳞云杉群落和蒙古栎群落;臭冷杉-长白松群落、长白落叶松-鱼鳞云杉群落和蒙古栎群落中长白松生存压力相对较小,彼此无明显差异。长白松生存压力与其所处植物群落演替阶段及其龄级结构有关。目前,保护区采取严格保护和管理方式不完全有利于长白松种群的稳定发展。根据长白松种群所处的植物群落生境特点、种群生存压力状况并结合种群年龄结构特征,针对不同群落类型提出相应抚育措施建议以期为长白松天然种群的保护提供参考。  相似文献   
55.
紫穗槐叶片浸提液对长柄扁桃种子萌发和幼苗生长的影响   总被引:1,自引:0,他引:1  
紫穗槐和长柄扁桃是中国西北干旱和半干旱地区的常见绿化植物。为探索紫穗槐搭配长柄扁桃进行绿化建设和生态修复的可行性,采用培养皿滤纸法和土培法测定了5种质量浓度的紫穗槐叶片浸提液(0.025、0.05、0.10、0.15和0.20 g·mL-1)对长柄扁桃8个品种(YY1、YY3、YY4、YY5、YY6、SM6、SM7和SM8)的化感作用。结果表明: 当浸提液浓度为0.025和0.05 g·mL-1时,长柄扁桃YY1和SM6品种的种子萌发和幼苗长势显著优于其他品种。随紫穗槐叶片浸提液浓度升高,长柄扁桃幼苗过氧化氢酶活性呈先升高后降低的趋势。此外,随叶片浸提液浓度升高,过氧化酶和超氧化物歧化酶活性以及可溶性蛋白和叶绿素含量降低,而丙二醛和可溶性糖含量及细胞膜透性呈现逐渐上升的趋势。主成分及聚类分析表明,在紫穗槐化感作用下,长柄扁桃的生长势按照YY1、SM6、SM8、SM7、YY6、YY3、YY5和YY4顺序依次降低。综上,低密度紫穗槐与长柄扁桃YY1和SM6品种人工搭配混合种植有利于促进长柄扁桃种子萌发和幼苗生长。  相似文献   
56.
为了阐明Cu2O纳米颗粒(NPs)暴露对植物根系的毒性效应,本研究以小麦品种‘周麦18’为材料,采用水培试验方法,研究了10、50、100和200 mg·L-1浓度的Cu2O-NPs对小麦幼苗生长、根系活性、形态结构及细胞遗传学毒性的影响。结果表明: 不同浓度的Cu2O-NPs降低了小麦幼苗的根芽长度、鲜重、根活性和根冠比,增加了初生根的数量;随着Cu2O-NPs浓度的升高,幼苗根伸长区缩短、根系变硬变脆、根径增加、根冠变大;100 mg·L-1浓度的Cu2O-NPs处理下,小麦根尖有丝分裂指数显著降低,根尖细胞形状不规则化、质壁分离、细胞出现空泡化、细胞核核膜模糊、核内染色体异常。在水培条件下,Cu2O-NPs对小麦幼苗具有一定的遗传学毒性效应,从而影响小麦幼苗的生长发育和根系形态结构。  相似文献   
57.
为了解林下红松幼苗生长和养分存储季节动态,以长白山原始阔叶红松林(原始林)和次生杨桦林(次生林)林下2年生红松幼苗为对象,研究林下光合有效辐射(PAR)、幼苗生物量、非结构性碳水化合物(NSC)、全氮(N)和全磷(P)等指标的季节变化,分析两林分林下光照的季节动态及其差异对红松幼苗生长和养分积累的影响。结果表明: 原始林和次生林林下月PAR累积量季节变化都呈“双峰”型,夏季为郁闭期,两林分林下光线弱。春季和秋季为阔叶树无叶期,林下光照条件变好,且次生林林下光照明显好于原始林;原始林和次生林红松幼苗的生物量、NSC、全N和全P浓度的季节动态与林下光照的季节变化基本一致,在春季和秋季表现为显著增加,在夏季呈下降趋势。春季幼苗的淀粉浓度增加,夏季淀粉和可溶性糖浓度均逐渐降低,到8月达到最低值,秋季可溶性糖浓度显著升高。春季和秋季次生林林下幼苗的生物量和NSC浓度整体上均显著高于原始林,而夏季两林分差异不显著。因此,春季和秋季的林下光照条件差异是影响原始林和次生林中红松幼苗养分积累和生长更新差异的主要原因。  相似文献   
58.
铀尾沙对油菜幼苗生长和生理特征的影响   总被引:4,自引:0,他引:4  
采用沙培盆栽试验,以铀尾沙所占比例分别为0%(CK)、25%(T1)、50%(T2)、75%(T3)、100%(T4)的培养基质,研究了铀尾沙对芥菜型油菜、甘蓝型油菜和白菜型油菜出苗率、幼苗生物量、叶绿素含量、丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)活性和还原型谷胱甘肽(GSH)含量的影响.结果表明:不同比例的铀尾沙对油菜出苗率的影响差异不显著(P>0.05).3种油菜的生物量均随铀尾沙处理量的增加而呈先增后降的现象,甘蓝型油菜和白菜型油菜在T2时生物量最大,芥菜型油菜在T3时生物量最大.MDA含量则呈先降低后升高,甘蓝型油菜和白菜型油菜在T2时MDA含量最低,芥菜型油菜在T3时的MDA含量最低,并与叶绿素含量呈显著的负相关.随铀尾沙处理量的增加,3种类型的油菜SOD、CAT、POD、APX和GR活性逐渐增加,GSH含量也持续升高.铀尾沙对油菜幼苗生长和抗氧化酶系统产生了一定的诱导作用,而这3种油菜也对铀尾沙也表现出较强的耐受能力.  相似文献   
59.
分析了3种重金属离子(Cd2+、Cu2+、Zn2+)对向日葵种子胚根伸长和早期幼苗生长的影响.结果表明,3种重金属离子对向日葵胚根伸长的抑制作用依次为:Cd2+>Cu2+>Zn2+.3种重金属胁迫明显降低了幼苗生长和叶绿素含量,并显著提高了H2O2水平.其中Cd2+胁迫引起幼苗H2O2爆发高于Cu2+和Zn2+胁迫.进一步分析植株抗氧化系统的变化发现,随着重金属离子浓度的增加,向日葵幼苗酶类抗氧化物质SOD和CAT的活性表现为先增加后降低的趋势;重金属胁迫提高了非酶类的抗氧化物质脯氨酸和GSH的含量.其中Cd2+和Zn2+胁迫对脯氨酸含量变化的影响大于Cu2+胁迫;而Cu2+胁迫对GSH含量变化的影响大于Cd2+和Zn2+胁迫.  相似文献   
60.
Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to characterize the responses of seedlings to low P availability and to identify QTLs for root traits, biomass, and plant height under P-deficiency and P-sufficiency conditions. Plant height, total dry weight, shoot dry weight, and root number were inhibited under P-deficiency, whereas maximum root length (MRL) and root-shoot ratio (RS) were induced by P-deficiency stress. Relative MRL (RMRL, the ratio of MRL under P-deficiency to MRL under P-sufficiency con- dition) and relative RS (RRS) were used to evaluate P-deficiency tolerance at the seedling stage. A total of 24 additive QTLs and 29 pairs of epistatic QTLs were detected, but only qRN4 was detected in both conditions. This suggested that different mechanisms may exist in both P supply levels. QTLs for adaptive traits (RMRL, RRS, RRV, and RRDW) and qRN4 consistently expressed to increase trait stability may contribute to P-deficiency tolerance. Twelve intervals were cluster regions of QTLs for P-deficiency tolerance, and one QTL (qRRSS) showed pleiotropic effects on P-deficiency tolerance and drought tolerance. These interesting QTLs can be used in marker-assisted breeding through the target ILs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号