首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   7篇
  国内免费   74篇
  2023年   5篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
排序方式: 共有82条查询结果,搜索用时 187 毫秒
51.
林木根呼吸及测定方法进展   总被引:33,自引:1,他引:32       下载免费PDF全文
 森林土壤呼吸的近2/3是由林木根呼吸产生的,林木根呼吸对估计森林C吸存及构建森林生态系统碳动态模型有重要意义,是全球碳循环研究的一个重要组成部分。林木根呼吸包括生长呼吸和维持呼吸,不同森林生态系统林木根呼吸对土壤呼吸的贡献大多在40%~60%范围内,林木根呼吸在生长季节较高而休眠季节较低。测定林木根呼吸的主要方法有排除根法、离体根法、同位素法和原位PVC管气室法,前两者相对简单、成本低,常用于森林生态系统中;同位素法可原位测定根呼吸,对土壤干扰较小,但不易操作,且成本高。根呼吸受土壤温度、根直径大小、根组织N浓度、环境CO2浓度、土壤湿度、养分有效性等因素的影响。今后的研究应集中在以下方面:1)探讨和比较不同条件下测定根呼吸组成(生长呼吸、维持呼吸)的最合适方法;2)加大在野外条件下使用有效方法分离根呼吸和根际微生物呼吸的力度;3)对森林生态系统根呼吸动态进行长期的定位研究;4)进一步加强研究不同气候带,不同森林类型林木根呼吸,并将研究尺度从气室扩大到区域或全球水平;5)加强林木根呼吸对全球变化的响应及机制的研究;6)对林木根呼吸进行多学科合作研究将为全球C循环做出新的贡献。  相似文献   
52.
格氏栲天然林和人工林土壤呼吸对干湿交替的响应   总被引:37,自引:8,他引:29  
通过室外定位观测前期连续干旱情况下天然降雨及室内模拟不同温度 (10℃、19℃和 2 8℃ )下测定格氏栲天然林、格氏栲人工林和杉木人工林土壤增湿后呼吸动态 ,探讨不同林型土壤呼吸对土壤干湿交替的响应。结果发现室外定位观测和室内模拟试验均出现了增湿后土壤呼吸骤升至最大值及随后逐渐衰减的现象 ,且这种变化可由时间过程模型 (R=ate- bt c)较好地进行拟合。温度升高提升了土壤呼吸对干湿交替的响应值 RV。格氏栲天然林土壤呼吸对干湿交替的响应对温度最为敏感 ,随温度升高其响应指数 RE增加 ;杉木林土壤呼吸对干湿交替的响应指数 RE最高 ,且对土壤水分变化最敏感 ,但随温度升高超过一定限度后其响应指数 RE反而降低  相似文献   
53.
森林土壤呼吸及其对全球变化的响应   总被引:70,自引:5,他引:65  
森林土壤呼吸是全球碳循环的重要流通途径之一 ,其动态变化将直接影响全球 C平衡。森林土壤呼吸由自养呼吸和异养呼吸组成 ,不同森林类型、测定季节和测定方法等直接影响其所占比例。土壤温度和湿度是影响森林土壤呼吸的最主要因素 ,共同解释了森林土壤呼吸变化的大部分。因树种组成、生产力和枯落物数量等不同而使不同森林类型土壤呼吸速率表现出明显差异。采伐对森林土壤呼吸的影响结果有增加、降低或无影响 ,因采伐方式、森林类型、采伐迹地上植被恢复进程和气候条件等而异。火烧一般导致土壤呼吸速率降低。因肥料种类、施用剂量和立地条件不同 ,施肥对森林土壤呼吸的影响出现增加、降低或无影响等不同结果。大气 CO2 浓度升高和升温均可促进森林土壤呼吸。 N沉降有可能刺激了土壤呼吸 ,而酸沉降则可能降低了土壤呼吸。臭氧浓度和 UV-B辐射强度亦会在一定程度上影响森林土壤呼吸。但目前全球变化对森林土壤呼吸的综合影响尚不清楚 ,深入探讨森林土壤呼吸的调控因素及其对全球变化和营林措施的响应等仍是今后努力的主要方向。  相似文献   
54.
格氏栲天然林与人工林凋落叶分解过程中养分动态   总被引:5,自引:0,他引:5  
通过对中亚热带格氏栲天然林 (natural forest of Castanopsis kawakamii, 约150a)、格氏栲和杉木人工林 (monoculture plantations of C. Kawakamii and Cunninghamia lanceolata,33年生) 凋落叶分解过程中养分动态的研究表明,各凋落叶分解过程中N初始浓度均发生不同程度的增加后下降;除格氏栲天然林中其它树种叶和杉木叶P浓度先增加后下降外,其它均随分解过程而下降;除杉木叶外,其它类型凋落叶的Ca和Mg浓度呈上升趋势;凋落叶K浓度均随分解过程不断下降.养分残留率与分解时间之间存在着指数函数关系xt=x0e-kt.凋落叶分解过程中各养分释放常数分别为N(kN) 0.678~4.088;P (kP) 0.621~4.308;K(kK) 1.408~4.421;Ca (kCa) 0.799~3.756;Mg (kMg) 0.837 ~ 3.894.除杉木叶外,其它凋落叶分解过程中均呈kK>kP>kN>kMg>kCa的顺序变化.各林分凋落叶的年养分释放量分别为N 10.73~48.19kg/(hm2·a),P 0.61~3.70kg/(hm2·a),K 6.66~39.61kg/(hm2·a),Ca 17.90~20.91kg/(hm2·a),Mg 3.21~9.85kg/(hm2·a).与针叶树人工林相比,天然阔叶林凋落叶分解过程中较快的养分释放和较高的养分释放量有利于促进养分再循环,这对地力维持有重要作用.  相似文献   
55.
杉木观光木混交林细根的分布   总被引:12,自引:0,他引:12  
对27年生混交比例为2行杉木和1行观光木的混交林和杉木纯林群落细根分布的研究表明,杉木和观光行间的杉木细根密度虽比极木行间的低8.5%,但观光木细根密度则高152.09%,其细根总密度比杉木与杉木行间的大10.43%。混交林中杉木各径级活动根密度呈单峰型分布,均以5-10cm土层最大,而观光木各径级各活细根主要分布在0-10cm土层内。纯林杉木各径活细根密度亦基本呈单峰型分布,但峰值出现在10-20cm或20-30cm土层。不同树种不同径级死细根的分布均与其各自的活细根分布相似。混交林中灌木细根密度在30-40cm的土层最大,而纯林中的灌木细根集中于0-10cm的表土层;混交林和纯林中的草木细根均集中在0-5cm土层。与纯林的相比,混交林中杉木细根主要分布的土层明显上移,表层土壤细根所占比重增大,有利于更好利用土壤养分和提高群落生产力。  相似文献   
56.
 通过福建省中亚热带杉木观光木混交林(Cunninghamia lanceolata and Tsoongiodendron odorum mixed forest)和杉木纯林(Pure C. lanceolata forest)凋落物的分解和养分释放动态试验研究表明,凋落物各组分分解过程中干物质损失速率随时间而减小,分解1年时以观光木叶的干重损失最大。各组分分解过程中N、P元素浓度增加而K和C元素浓度下降。混交林中各组分的养分释放速率大小为观光木叶>混合样品(等重量的观光木叶和杉木叶混合)>杉木叶>杉木  相似文献   
57.
全球气候变暖与氮沉降是两个同时存在的全球变化主要因素,但目前关于二者的研究多以单因子为主。细根碳(C)、氮(N)、磷(P)浓度影响着森林生态系统生产力与碳汇,然而目前关于气候变暖与N沉降对细根化学组成元素的影响尚不清楚。本研究在福建三明森林生态系统与全球变化研究站陈大观测点开展增温(W,+4℃)与N添加(N,+40 kg N·hm^-2·a^-1)双因子试验,探讨增温与N添加对杉木细根C、N、P化学计量学的影响。结果表明:(1)增温提高了春季细根N浓度,对细根C与P浓度则无显著影响;增温降低了春季细根C∶N,对细根N∶P无显著影响。(2)N添加提高了细根C浓度与春季细根N浓度,对细根P浓度则无显著影响;N添加降低了春季细根C∶N,提高了春季细根N∶P。(3)增温与N添加的交互作用对春季1~2 mm径级细根C浓度有显著影响,但对0~1 mm径级细根C浓度无显著影响,并且增温与N添加的交互作用对细根N与P浓度均无显著影响。本研究表明,增温与N添加会促进亚热带森林生态系统养分循环,N添加并未改变亚热带杉木人工林N限制现状;增温与N添加的交互作用对细根C、N、P元素的影响并不一致,受苗木C投资权衡与生长稀释效应所调节。  相似文献   
58.
中国亚热带森林转换对土壤呼吸动态及通量的影响   总被引:43,自引:6,他引:37  
通过用静态碱吸收法对中国亚热带福建三明格氏栲自然保护区内的格氏栲天然林和33年生的格氏栲人工林及杉木人工林的土壤呼吸进行为期2a的定位研究,结果表明,3种森林土壤呼吸速率季节变化均呈单峰曲线,最大值出现在5月至6月份,最小值出现在12月至翌年1月份。格氏栲天然林、格氏栲人工林和杉木人工林土壤呼吸速率一年中变化范围分别在403.47~1001.12mgCO2m-2h-1、193.89~697.86mgCO2m-2h-1和75.97~368.98mgCO2m-2h-1之间。2002年土壤呼吸速率主要受土壤温度影响,但在极端干旱的2003年则主要受土壤湿度的影响。双因素关系模型(R=aebTWc)拟合结果优于仅考虑土壤温度或土壤湿度的单因素关系模型,土壤温度和土壤湿度共同解释不同年份不同森林土壤呼吸速率季节变化的80%~96%。杉木林土壤呼吸对气候变化敏感性高于格氏栲天然林和人工林。格氏栲天然林、格氏栲人工林和杉木人工林土壤呼吸年通量分别为13.742、9.439和4.543tC·hm-2·a-1,前者分别约是后二者的1.5倍和3.0倍。森林转换对土壤呼吸通量的影响可能与枯落物数量和质量、根系呼吸、土壤有机质数量和质量的变化有关。  相似文献   
59.
运用土芯法研究福建省三明市6种不同更新方式林分(米槠天然林、米槠天然更新林、米槠人促更新林、米槠人工林、马尾松人工林、杉木人工林)根系的(直径≤5 mm)根长随直径分布特点。结果表明:0—5 mm直径根系的根长87%—98%集中于0—2 mm直径范围内,65%—88%集中于0—1 mm直径范围内。6种不同更新方式林分的根长直径分布均呈单峰型分布,且均可用对数正态分布累积函数进行较好的拟合,R~2均达0.99以上。函数中拟合参数μ值和σ值的变化代表了不同林分细根在资源获取策略中的差异。拟合参数μ值和σ值之间具有很好的负相关,表明这两个参数呈现协同性变化,反映了细根资源获取策略中的权衡关系。随树种多样性的增加,μ值趋于更小而σ值更大,可能体现了树种间根系对养分和水分竞争的加剧;不同树种人工林μ值、σ值亦存在明显分异,反映了不同树种土壤资源利用策略的差异。结论表明对数正态分布累积函数可以很好地反映林分尺度的根系直径频率分布特点及根系资源利用策略。  相似文献   
60.
氮沉降会影响细根的形态功能性状,进而影响细根对养分的吸收,导致陆地生态系统养分循环发生变化.为了解氮沉降对细根形态功能性状的影响,利用根袋法进行原位试验,研究中亚热带常绿阔叶林外生菌根树种罗浮栲和米槠细根形态对短期氮添加的可塑性响应.结果表明: 低序级根(1~3序级)的比根长和比表面积对氮添加的可塑性响应高于高序级根(4序级),细根组织密度对氮添加的可塑性响应从1序级到4序级逐渐加强,而各序级细根直径对氮添加则无显著的可塑性响应;低序级细根比根长、比表面积的可塑性响应与高序级细根组织密度的可塑性响应之间存在一定的协同变化.罗浮栲和米槠细根的比根长、比表面积、组织密度对氮添加表现出相反方向的可塑性响应,表明施氮后不同外生菌根树种采取了不同的养分觅食策略:施氮后罗浮栲在养分获取上采取的是增加比根长、比表面积和根长增殖速率的资源快速获取策略,而米槠则采取了增大细根组织密度的相对保守的资源获取策略.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号