首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   8篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   10篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   6篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有75条查询结果,搜索用时 234 毫秒
51.
52.
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.  相似文献   
53.
Kim JH  Park SW  Yu YS  Kim KW  Kim JH 《Biochimie》2012,94(3):734-740
In ocular development, retinal physiological hypoxia in response to the retinal metabolic activity controls retinal vascular development, which is regulated by variable angiogenic factors. Herein, we demonstrated that hypoxia-induced IGF-II could contribute to retinal vascularization in ocular development. In the developing retina, IGF-II expression appears to be predominant on retinal vessels, which was chronologically increased and peaked during active retinal angiogenesis similar to VEGF expression. Under hypoxic condition, IGF-II as well as VEGF was significantly up-regulated in retinal vascular endothelial cells. In addition, IGF-II treatment could also increase VEGF expression in retinal vascular endothelial cells. The VEGF expression induced by IGF-II was mediated by ERK-1/2 activation. Moreover, IGF-II strongly promoted angiogenic processes of migration and tube formation of retinal microvascular endothelial cells. In conclusion, our results provided that hypoxia-induced IGF-II may regulate retinal vascular development not only directly by IGF-II-mediated angiogenic activity, but also indirectly by IGF-II-induced VEGF expression. Therefore, the potential contribution of IGF-II to pathological retinal angiogenesis should be furthermore explored for the development of novel treatments to vaso-proliferative retinopathies.  相似文献   
54.
联合细胞培养在组织工程血管化中的应用   总被引:5,自引:0,他引:5  
自从1987年正式提出组织工程这一概念来以来,培养具有生物学活性组织器官替代物始终是组织工程学的发展方向。目前,虽然一些工程化组织如皮肤、软骨等已被成功构建,并应用于临床,但其他工程化组织如心脏、骨骼肌、肝脏等体积大、功能复杂,移植后难以及时建立血液供应。而及时建立的血管网络对组织器官的存活与功能实现至关重要。为此,国内外一些实验室采用联合细胞培养的方法,观察不同细胞间的相互作用对血管形成的影响。结果表明,联合细胞培养在血管的形成、稳定和成熟方面起着重要作用。  相似文献   
55.
56.
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions. To address this problem, we examined the anatomy of the mouse placenta by preparing plastic vascular casts and serial histological sections of implantation sites from embryonic day (E) 10.5 to term. We found that each radial artery carrying maternal blood into the uterus branched into 5-10 dilated spiral arteries located within the metrial triangle, populated by uterine natural killer (uNK) cells, and the decidua basalis. The endothelial-lined spiral arteries converged together at the trophoblast giant cell layer and emptied into a few straight, trophoblast-lined "canals" that carried maternal blood to the base of the placenta. Maternal blood then percolated back through the intervillous space of the labyrinth toward the maternal side of the placenta in a direction that is countercurrent to the direction of the fetal capillary blood flow. Trophoblast cells were found invading the uterus in two patterns. Large cells that expressed the trophoblast giant cell-specific gene Plf (encoding Proliferin) invaded during the early postimplantation period in a pattern tightly associated with spiral arteries. These peri/endovascular trophoblast were detected only approximately 150-300 microm upstream of the main giant cell layer. A second type of widespread interstitial invasion in the decidua basalis by glycogen trophoblast cells was detected after E12.5. These cells did not express Plf, but rather expressed the spongiotrophoblast-specific gene Tpbp. Dilation of the spiral arteries was obvious between E10.5 and E14.5 and was associated with a lack of elastic lamina and smooth muscle cells. These features were apparent even in the metrial triangle, a site far away from the invading trophoblast cells. By contrast, the transition from endothelium-lined artery to trophoblast-lined (hemochorial) blood space was associated with trophoblast giant cells. Moreover, the shaping of the maternal blood spaces within the labyrinth was dependent on chorioallantoic morphogenesis and therefore disrupted in Gcm1 mutants. These studies provide important insights into how the fetoplacental unit interacts with the maternal intrauterine vascular system during pregnancy in mice.  相似文献   
57.
The vascularization of the pedicel in Marisol clementine (Citrus clementina Hort. ex Tanaka) has been characterized in relation to fruit growth. Phloem and xylem formation occurred during the first half of the period of fruit growth. Phloem cross-sectional area reached its maximum value by the end of fruitlet abscission, 78 d after anthesis (DAA), shortly after the rate of accumulation of dry matter in fruitlets reached its maximum value. Secondary xylem formation occurred until day 93, well after the end of fruitlet abscission. At fruit maturity, xylem accounted for 42-46 % of the cross-section of the pedicel. Vessels differentiated in this late-formed xylem. Formation of phloem and early xylem was directly related to fruitlet size (and growth rate). Differences in the rate of formation of conductive tissues in the pedicel of the developing fruitlets followed rather than preceded the differences in growth rate. Specific mass transfer (SMT) in the phloem was highest in the fastest growing fruitlets, and peaked during the late stages of fruitlet abscission (72-78 DAA) and during the main period of fruit growth (107-121 DAA). Application of a synthetic auxin to developing fruits, either at the end of flowering (2,4-D) or by day 64 after flowering (2,4-DP), increased the growth rate of the fruit and fruit size at maturity (8-13 % increase in fruit diameter at maturity). These auxin applications also enhanced the formation of conductive tissues in the pedicel, with a specific effect on phloem formation. Applying auxin at flowering resulted in a reduction in the phloem SMT by days 72-78, whereas auxin application on day 64 increased this parameter. Despite this difference in behaviour, which resulted from the different time-course of the growth response of the fruit to auxin applications, these applications increased fruit size to a similar extent. Severing 37 % of the phloem of the pedicel during the main period of fruit growth resulted in an increase in the specific mass transfer in the phloem but had no influence on fruit growth. These observations demonstrate that the transport capacity in the phloem of the pedicel does not limit fruit growth and, within the limits of our experiments, an increase in demand by the fruit appeared to be matched by an increase in SMT. The dependence of late xylem formation (after the period of fruitlet abscission) on fruitlet growth was demonstrated in Salustiana orange [Citrus sinensis (L.) Osbeck] by means of controlling fruit growth through the manipulation of leaf area. Fruit growth at this time was more closely related to leaf area than to carbohydrate levels, suggesting that it may be limited by current photosynthesis.  相似文献   
58.
In order to clarify whether the structures observed at the base of the petiole of the genus Ilex are colleters resulting from stipules, the anatomy, vascularization and secretions of these supposed glandular structures were analysed in nine species. This is the first report of colleters in Ilex. Stipular colleters replace the stipules in all species studied and are characterized by the presence of vascular traces. In addition to the stipular colleters, three other types of colleter were distinguished: standard and lachrymiform colleters found on the leaf teeth or crenations, and sessile colleters found on the margins of the floral bracts. Their basic structure consists of a central core of parenchymatous cells surrounded by one layer of palisade secretory epidermal cells. Histochemical tests were also performed on secretions; proteins were found in the secretions studied, but glucose was not. The glandular origin of the stipular colleters is confirmed on the basis of their position, secretions and anatomy. Analyses of the colleter‐secreted proteins distinguished two different groups of Ilex species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 197–210.  相似文献   
59.
The ovarian renin–angiotensin system may play an important role in follicular growth and maturation, as well as in the process of ovulation. The aim of this study was to investigate the effects of administration of a GnRH analogue to cows with ovarian follicular cysts on plasma renin concentrations and ovarian vascularization. This study was performed with 60 Friesian cows, which were diagnosed with follicular cysts, and randomly allocated into two groups: group A (treatment; n = 30) received 2 ml of lecirelin (Dalmarelin® – Fatro), per head via sacro-coccygeal epidural, and group B (control; n = 30) received 2 ml saline solution (0.9% NaCl) per head by the same route. Blood samples were immediately collected prior to administration (T0) and then 24 h (T1), 48 h (T2) and 8 days (T3) after administration of the treatment, for both groups. Ovarian vascularization was evaluated utilizing Power Doppler on these same days in 10 animals from each group. The number of pixels detected by Power Doppler was used as an indicator of the degree of vascularization. Plasma renin concentrations remained relatively constant for the control (group B) animals, but increased as the sampling period progressed (NS) for the treated cows (group A). Similarly, there were no changes in ovarian vascularization (number of pixels) for the control cows, but vascularization increased throughout the sampling period in the treated animals. The number of pixels associated with cysts was significantly higher for treated compared to control cows at 24 h after treatment (P < 0.001). The epidural administration of a GnRH analogue was determined to be a highly effective therapy for follicular cysts (regression occurred in 82% of treated cows within 8 ± 2 days after treatment, but in none of the control cows), which also enhanced ovarian vascularization.  相似文献   
60.
Investigating organogenesis in utero is a technically challenging process in placental mammals due to inaccessibility of reagents to embryos that develop within the uterus. A newly developed ex vivo upright droplet culture method provides an attractive alternative to studies performed in utero. The ex vivo droplet culture provides the ability to examine and manipulate cellular interactions and diverse signaling pathways through use of various blocking and activating compounds; additionally, the effects of various pharmacological reagents on the development of specific organs can be studied without unwanted side effects of systemic drug delivery in utero. As compared to other in vitro systems, the droplet culture not only allows for the ability to study three-dimensional morphogenesis and cell-cell interactions, which cannot be reproduced in mammalian cell lines, but also requires significantly less reagents than other ex vivo and in vitro protocols. This paper demonstrates proper mouse fetal organ dissection and upright droplet culture techniques, followed by whole organ immunofluorescence to demonstrate the effectiveness of the method. The ex vivo droplet culture method allows the formation of organ architecture comparable to what is observed in vivo and can be utilized to study otherwise difficult-to-study processes due to embryonic lethality in in vivo models. As a model application system, a small-molecule inhibitor will be utilized to probe the role of vascularization in testicular morphogenesis. This ex vivo droplet culture method is expandable to other fetal organ systems, such as lung and potentially others, although each organ must be extensively studied to determine any organ-specific modifications to the protocol. This organ culture system provides flexibility in experimentation with fetal organs, and results obtained using this technique will help researchers gain insights into fetal development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号