首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   16篇
  国内免费   26篇
  2023年   6篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   10篇
  2016年   10篇
  2015年   8篇
  2014年   16篇
  2013年   39篇
  2012年   10篇
  2011年   20篇
  2010年   6篇
  2009年   15篇
  2008年   22篇
  2007年   20篇
  2006年   24篇
  2005年   25篇
  2004年   17篇
  2003年   16篇
  2002年   16篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   10篇
  1995年   16篇
  1994年   9篇
  1993年   7篇
  1992年   14篇
  1991年   11篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1976年   2篇
  1975年   1篇
排序方式: 共有478条查询结果,搜索用时 62 毫秒
51.
【背景】烟草特有亚硝胺(tobacco-specific nitrosamines, TSNAs)是烟草于调制和发酵阶段产生的一类致癌物质,由烟草生物碱与氮氧化物发生亚硝化反应生成,生物碱和亚硝酸盐是TSNAs的直接前体物质。【目的】发掘适用雪茄高温发酵且显著降低TSNAs形成与积累的微生物。【方法】以TSNAs前体物质亚硝酸盐的高效降解为目标,对从雪茄烟叶分离得到的烟草源微生物菌株进行高温培养、亚硝酸盐降解及亚硝酸盐耐受能力研究,得到可于50℃高效降解亚硝酸盐及耐受高浓度亚硝酸盐的微生物菌株,将菌株应用于雪茄烟叶高温发酵35 d,对发酵前后亚硝酸盐、TSNAs、常规化学成分和中性香味成分含量进行测定,分析菌株在雪茄烟叶发酵中对TSNAs含量及烟叶品质的影响。【结果】获得了3株于50℃高效降解亚硝酸盐的菌株NY7、NY8和NY9,分别鉴定为莫海威芽孢杆菌(Bacillus mojavensis) NY7、耐盐芽孢杆菌(Bacillus halotolerans) NY8和枯草芽孢杆菌(Bacillus subtilis) NY9,其中B. halotolerans NY8亚硝酸盐降解能...  相似文献   
52.
The response of soil exchangeable sodium percentage levels to nitrate reductase activity, nitrite reductase activity, free proline, DNA, RNA, chlorophyll a and b contents and yield components in lentil (Lens esculenta Moench)cv. PL 406 was studied in a replicated pot experiment. All the biochemical observations were recorded at four growth stages i.e. 30, 60, 90 and 120 days after sowing (DAS). Germination occurred up to exhangeable sodium percentage of 30, but plants survived only up to 25. With increasing exchangeable sodium percentage, there was a continuous decrease in chlorophyll a and b content, nitrate and nitrite reductase enzyme activities and DNA and RNA content. Increasing level of sodicity enhanced the free proline content up to 60 DAS, after which values fell.Number of pods per plant, 1000 grain weight and grain yield were significantly reduced with increasing level of sodicity, but the number of grains per pod was not affected.  相似文献   
53.
Nitrosomonas europaea is capable of maintaining an anaerobic metabolism, using pyruvate as an electron donor and nitrite as an electron acceptor; utilization of nitrite depends upon supply of both pyruvate and ammonia. The role of ammonia in this reaction was not determined. N europaea also assimilates CO2 anaerobically into cell material in the presence of nitrite (0.5–1.0 mM), pyruvate and ammonia. This reaction was partially inhibited by nitrite which apparently competed with CO2 for reducing power. Anaerobic nitrite respiration is sensitive to ionophores, FCCP being the most effective.Non-standard-abbreviations TCA trichloroacetic acid - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazon  相似文献   
54.
55.
The decrease in the electron flow of the aerobic respiratory chain of the bacterium Paracoccus denitrificans, owing to either the drop in the saturation of terminal oxidases by oxygen or to the inhibition of the rate of respiration by azide or nitrite, resulted in the synthesis of dissimilatory nitrate reductase and nitrite reductase. The dependence of the resulting activities of the two enzymes (after a three-hour adaptation) on the initial value of the parameter Vmax/kLa (oxidase activity of the volume unit of the culture divided by the volumetric oxygen transfer coefficient) or on the concentrations of the inhibitors had a similar form, characterized by the appearance of a maximum. The increasing parts of the obtained curves reflect the synthesis of enzymes, probably initiated by the increase in the intracellular degree of reduction, the subsequent drop being evidently in connection with the lack of metabolic energy for biosynthesis. The possible mechanisms of the effect of nitrogenous terminal acceptors (NO-3 and NO-2) on the formation of the denitrification pathway are discussed.  相似文献   
56.
Nitrate and nitrite was reduced by Escherichia coli E4 in a l-lactate (5 mM) limited culture in a chemostat operated at dissolved oxygen concentrations corresponding to 90–100% air saturation. Nitrate reductase and nitrite reductase activity was regulated by the growth rate, and oxygen and nitrate concentrations. At a low growth rate (0.11 h–1) nitrate and nitrite reductase activities of 200 nmol · mg–1 protein · min–1 and 250 nmol · mg–1 protein · min–1 were measured, respectively. At a high growth rate (0.55 h–1) both enzyme activities were considerably lower (25 and 12 nmol mg–1 · protein · min–1). The steady state nitrite concentration in the chemostat was controlled by the combined action of the nitrate and nitrite reductase. Both nitrate and nitrite reductase activity were inversely proportional to the growth rate. The nitrite reductase activity decreased faster with growth rate than the nitrate reductase. The chemostat biomass concentration of E. coli E4, with ammonium either solely or combined with nitrate as a source of nitrogen, remained constant throughout all growth rates and was not affected by nitrite concentrations. Contrary to batch, E. coli E4 was able to grow in continuous cultures on nitrate as the sole source of nitrogen. When cultivated with nitrate as the sole source of nitrogen the chemostat biomass concentration is related to the activity of nitrate and nitrite reductase and hence, inversely proportional to growth rate.  相似文献   
57.
The assimilation of nitrate under dark-N2 and dark-O2 conditions in Zea mays leaf tissue was investigated using colourimetric and 15N techniques for the determination of organic and inorganic nitrogen. Studies using 15N indicated that nitrate was assimilated under dark conditions. However, the rate of nitrate assimilation in the dark was only 28% of the rate under non-saturating light conditions. No nitrite accumulated under dark aerobiosis, even though nitrate reduction occurred under these conditions. The pattern of nitrite accumulation in leaf tissue in response to dark-N2 conditions consisted of three phases: an initial lag phase, followed by a period of rapid nitrite accumulation and finally a phase during which the rate of nitrite accumulation declined. After a 1-h period of dark-anaerobiosis, both nitrate reduction and nitrite accumulation declined considerably. However, when O2 was supplied, nitrate reduction was stimulated and the accumulated nitrite was rapidly reduced. Anaerobic conditions stimulated nitrate reduction in leaf tissue after a period of dark-aerobic pretreatment.  相似文献   
58.
Staining of sodium dodecyl sulfate or lithium dodecyl sulfate gels with 3,3',5,5'-tetramethylbenzidine (TMBZ)/H2O2 after electrophoresis has frequently been used as a specific method of detecting heme proteins. That TMBZ is an electron donor for O2 reduction by the nonheme-soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea is now shown; this protein is detected by the TMBZ/H2O2 method. A method for the determination of TMBZ oxidase activity is given; hence, the detection of artifactual staining due to proteins of this type is possible.  相似文献   
59.
Plastids were separated from extracts of pea (Pisum sativum L.) roots by sucrose-density-gradient centrifugation. The incubation of roots of intact pea seedlings in solutions containing 10 mM KNO3 resulted in increased plastid activity of nitrite reductase and to a lesser extent glutamine synthetase. There were also substantial increases in the activity of glucose-6-phosphate and 6-phosphogluconate dehydrogenases. No other plastid-located enzymes of nitrate assimilation or carbohydrate oxidation showed evidence of increased activity in response to the induction of nitrate assimilation. Studies with [1-14C]-and [6-14C]glucose indicated that there was an increased flow of carbon through the plastid-located pentose-phosphate pathway concurrent with the induction of nitrate assimilation. It is suggested that there is a close interaction through the supply and demand for reductant between the pathway of nitrite assimilation and the pentose-phosphate pathway located in the plastid.  相似文献   
60.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号