首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5–6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other -subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published -subdivision proteobacterial sequences.Abbreviations COI cytochrome oxidase subunit I - COII cytochrome oxidase subunit II - COIII cytochrome oxidase subunit III - HOS Heme O synthase - ORF open reading frame - SDS sodium dodecyl sulfate  相似文献   

2.
通过组织化学染色、电镜观察、酶活性分析对水分胁迫诱导玉米叶片质外体产生H2O2进行了研究。结果表明:水分胁迫能够诱导玉米叶片内源ABA的积累,ABA参与了水分胁迫诱导的玉米叶片H2O2的产生,质膜NADPH氧化酶、细胞壁过氧化物酶(POD)以及质外体多胺氧化酶(PAO)是水分胁迫诱导玉米细胞在质外体产生H2O2的来源,其中质膜NADPH氧化酶是主要来源;内源ABA的积累参与了水分胁迫激活的质膜NADPH氧化酶、细胞壁POD和质外体PAO活性的提高。研究认为,水分胁迫诱导玉米细胞在质外体产生H2O2可能是由于水分胁迫下内源ABA的积累通过激活质膜NADPH氧化酶、细胞壁POD以及质外体PAO的活性而实现的。  相似文献   

3.
The O2(-)-forming respiratory burst oxidase is present in a dormant state in a fully soluble system containing both cytosol and a deoxycholate extract of membranes from resting human neutrophils. Sodium dodecyl sulfate at low concentrations converts this soluble dormant oxidase into its catalytically active form. The Vmax for the activated oxidase was 2.1 mumol of O2-/min/mg of membrane protein. Michaelis constants for NADPH and NADH (38 microM and 1.7 mM, respectively) were similar to those measured previously in other systems. Oxidase activity was not detected after sodium dodecyl sulfate treatment of systems containing solubilized neutrophil membranes obtained from patients with X-linked chronic granulomatous disease. These results suggest that the deoxycholate extract contains both the resting oxidase and those membrane-associated components needed for its activation, all in functioning states.  相似文献   

4.
Cell-free extracts of Mycoplasma pneumoniae showed two distinct reduced nicotinamide adenine dinucleotide (NADH(2)) oxidase activities in the supernatant fraction. By ammonium sulfate fractionation and polyacrylamide gel electrophoresis, one activity not requiring flavine co-factors was precipitated by 50 to 70% ammonium sulfate concentration and identified with a slower-moving band on acrylamide gel electrophoresis; a second NADH(2) oxidase activity was flavine mononucleotide (FMN) dependent and associated with a more rapidly moving band; it could only be partially precipitated by ammonium sulfate concentrations ranging from 50 to 100%. Studies with alternate electron acceptors indicated the presence of a menadione, a 2,6-dichlorophenol indophenol and a very weak ferricyanide oxido-reductase activity, but no cytochrome c oxido-reductase, in the cell-free preparations. The NADH(2) oxidase activities of all fractions were relatively cyanide insensitive and were only minimally inhibited by flavoprotein and other respiratory chain inhibitors. H(2)O(2) formation was negligible unless FMN, but not flavine adenine dinucleotide (FAD), was added to the crude NADH(2) oxidase system; upon fractionation and electrophoresis, the H(2)O(2) formation was associated with the FMN-dependent, more rapidly moving NADH(2) oxidase band. This FMN-dependent NADH(2) oxidase-H(2)O(2) generating system may be a mechanism for the H(2)O(2) formation observed during glucose oxidation in the intact organism.  相似文献   

5.
Alcaligenes species CF8 isolated from surface water of a lake produced a novel serine type metallo-caffeine oxidase. The optimal medium for caffeine oxidase production by this strain was (w/v) NaNO(3), 0.4%; KH(2)PO(4), 0.15%; Na(2)HPO(4), 0.05%; FeCl(3).6H(2)O, 0.0005%; CaCl(2).2H(2)O, 0.001%; MgSO(4).7H(2)O, 0.02%; glucose, 0.2%; caffeine, 0.05%, pH 7.5. The enzyme was purified to 63-fold by using ammonium sulfate precipitation, dialysis, ion exchange (diethylaminoethyl-cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified caffeine oxidase was monomeric with a molecular mass of 65 kDa. The purified caffeine oxidase with a half-life of 20 min at 50 degrees C had maximal activity at pH 7.5 and 35 degrees C. The purified caffeine oxidase had strict substrate specificity towards caffeine (K(m) 8.94 microM and V(max) 47.62 U mg protein(-1)) and was not able to oxidize xanthine and hypoxanthine. The enzyme activity was not inhibited by para-chloromercuribenzoic acid, iodoacetamide, n-methylmaleimide, salicylic acid and sodium arsenite indicating the enzyme did not belong to xanthine oxidase family. The enzyme was not affected by Ca(+2), Mg(+2) and Na(+), but was completely inhibited by Co(+2), Cu(+2) and Mn(+2) at 1mM level. The novel caffeine oxidase isolated here from Alcaligenes species CF8 may be useful in biotechnological processes including waste treatment and biosensor development.  相似文献   

6.
The sodium channel saxitoxin binding component from rat sarcolemma was solubilized with NP-40 and centrifuged on sucrose gradients constructed in either D2O or H2O. When compared with a series of standard proteins the sedimentation behavior of the solubilized channel complex changed from an apparent S20,w of 9.1 in H2O to 6.1 in D2O. From these observations, a true partial specific volume of 0.83 ml/g was calculated for the complex. A Stokes radius of 8.6 nm was estimated from Sepharose 6-B chromatography in NP-40. The calculated protein molecular weight of the lipid-protein-detergent complex based on these data is 560,000. The complex contains about 56% protein, and the calculated molecular weight of this component is 314,000 if a v for the protein of 0.74 ml/g is assumed.  相似文献   

7.
Parameters governing the extent of activation of the O2- generating oxidase in a cell-free system derived from bovine neutrophils were examined. The reconstituted system consisted of the following: a particulate fraction enriched in plasma membrane and containing the oxidase, a soluble fraction containing cytosolic factor(s) required for oxidase a soluble fraction containing cytosolic factor(s) required for oxidase activation, a non hydrolyzable analog of GTP, and either arachidonic acid or sodium dodecyl sulfate. When the amount of arachidonic acid or sodium dodecyl sulfate was maintained at a fixed value with respect to the amount of membrane used, a sigmoidal response of oxidase activity to increasing amounts of cytosol added was observed. In contrast, when the concentration of arachidonic acid or sodium dodecyl sulfate was properly adjusted with respect to that of membrane and cytosol, the curve relating oxidase activity to cytosol was hyperbolic, pointing to a simple michaelian relationship for the dependence of oxidase activation on the activating factor(s) of cytosol. Another parameter affecting oxidase activation was the ionic strength of the reconstitution medium, the extent of activation being lower at high ionic strength.  相似文献   

8.
Mixed-function oxidation systems comprised of Fe3+, O2, and electron donors such as thiol compounds, ascorbate, NAD(P)H/NAD(P)H oxidase, and xanthine oxidase/hypoxanthine, catalyze the inactivation of many enzymes. This report describes the isolation and purification of a soluble protein from Saccharomyces cerevisiae, which specifically inhibits the inactivation of various enzymes by a nonenzymatic Fe3+/O2/thiol mixed-function oxidase system. When thiol is replaced with another electron donor (e.g. ascorbate), this specific protein no longer protects against iron (or copper)/O2-dependent radical-induced enzyme inactivation. Purification steps included a polyethylene glycol precipitation followed sequentially by a chromatography on DE52 and high pressure liquid chromatography on phenyl, DEAE, and gel-filtrated columns. The final gel filtration step yielded two protein peaks exhibiting protector activity and possessing a Mr of 500,000 and 90,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these two fractions gave a single band at 27 kDa suggesting that these protein species simply represent different oligomeric structures. The protector protein did not possess catalase, glutathione peroxidase, superoxide dismutase, or iron chelation activities. Since the protection activity reported herein is specific for mixed-function oxidation systems containing thiols, we propose that the protector protein functions as a sulfur radical scavenger.  相似文献   

9.
Phosphatidic acid (PA), a molecule that is rapidly produced by the stimulated turnover of phospholipids in a variety of cells including blood neutrophils, elicited NADPH-dependent superoxide anion (O2-) production in detergent extracts from membranes of resting pig neutrophils. The stimulatory effect of PA was independent of cytosolic factors, differing from arachidonic acid and sodium dodecyl sulfate which, on the contrary, absolutely required the presence of cytosol to elicit the same result. The O2(-)-forming activity of the detergent extract activable by PA, as that by sodium dodecyl sulfate and arachidonic acid plus cytosol, was found in the chromatographic fractions containing cytochrome b558 and presented a chromatographic profile identical to that of the activated NADPH oxidase, which was obtained from neutrophils prestimulated with phorbol 12-myristate 13-acetate. The PA-induced NADPH-dependent O2(-)-forming activity showed kinetic properties and sensitivity to the inhibitors similar to the classical ones of the activated neutrophil NADPH oxidase. The data suggest that, in this cell-free system, PA may stimulate O2- formation by direct interaction with latent NADPH oxidase of neutrophils or with some of its regulatory components.  相似文献   

10.
研究氧化苦参碱对L6大鼠成肌细胞H<>sub>2O2凋亡的影响.采用过氧化氢损伤L6大鼠成肌细胞的方法,建立L6大鼠成肌细胞H2O2凋亡模型.使用剂量为0.3,0.15,0.75 g/L的氧化苦参碱处理细胞.应用MTT法统计存活率和流式细胞仪检测细胞周期及凋亡率,用DAPI荧光染色、HE染色以及Bax和Bcl-2抗体鉴定损伤程度,Western blot检测蛋白质差异.结果表明,H2O2损伤的成肌细胞存活率降低,凋亡率增加.各种剂量氧化苦参碱能提高成肌细胞的存活率,促使Bcl-2增高,Bax降低.对成肌细胞的保护程度随氧化苦参碱剂量增加而增强,在剂量为0.3 g/L时,效果显著,其次是0.15、0.75 g/L的氧化苦参碱.其生理生化机制是氧化苦参碱保护2O2通过NFκB信号通路造成的大鼠成肌细胞凋亡模型.结果显示,氧化苦参碱具有作为新的抗氧化药物的潜力.  相似文献   

11.
目的:探讨白藜芦醇(Res)是否通过下调ERK激酶/胞外信号调节激酶/原癌基因(MEK/ERK/c-Jun)信号通路抑制小剂量过氧化氢(H2O2)诱导肺癌细胞增殖。方法:采用MTS实验检测小剂量20μM H2O2以及分别加入MEK阻断剂U0126和Res后H2O2对肺癌细胞NCI-H1395增殖的影响,采用Western Blot检测H2O2对ERK1/2和Akt蛋白磷酸化水平以及加入Res后H2O2对MEK、ERK1/2和c-Jun蛋白磷酸化水平的影响。结果:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,H2O2通过活化ERK1/2和Akt蛋白的磷酸化水平促进肺癌细胞NCI-H1395增殖,加入MEK阻断剂U0126后H2O2对肺癌细胞NCI-H1395增殖作用降低(P<0.05)。Res可抑制H2O2诱导的肺癌细胞NCI-H1395增殖,加入Res后,H2O2引起的MEK、ERK1/2和c-Jun蛋白磷酸化水平均降低(P<0.05)。结论:小剂量H2O2对肺癌细胞NCI-H1395具有促增殖作用,Res通过抑制MEK/ERK/c-Jun信号通路来抑制H2O2对肺癌细胞NCI-H1395的促增殖作用,其具体机制还需进一步研究。  相似文献   

12.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

13.
The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium.  相似文献   

14.
A 105,000 × g supernatant fraction from prepubertal rat ovaries was incubated in the presence of [γ-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by autoradiography. Inclusion of Ca2+ in the phosphorylation reaction promoted a selective 32p incorporation into two proteins of Mr = 95,000 and 50,000. Inclusion of chlorpromazine with Ca2+ blocked the Ca2+-stimulated increase of 32p incorporation. Our results demonstrate the presence of Ca2+-stimulated protein phosphorylation system capable of recognizing endogenous substrate proteins in the prepubertal rat ovary.  相似文献   

15.
Isolation of phospholipase A2 (EC 3.1.1.4) from sheep erythrocyte membranes was carried out by a combination of (1) extraction of membranes at low ionic strength, (2) solubilization of extracted membranes with sodium dodecyl sulfate, (3) replacement of dodecyl sulfate with cholate by means of gel exclusion chromatography and (4) affinity chromatography on dialkyl-phosphatidylcholine-Sepharose in the presence of cholate. The phospholipase was prepared with good yield and purified to near homogeneity, as judged by sodium dodecyl sulfate gel electrophoresis. The protein is a minor component of the sheep erythrocyte membrane and has an apparent molecular weight of 18 500.  相似文献   

16.
Generation of H2O2 in Brain Mitochondria   总被引:2,自引:2,他引:0  
Generation of H2O2 by rat brain mitochondria using succinate and glycerol-1-phosphate as substrates has been demonstrated. Earlier workers were unable to detect this activity in sucrose-Tris buffer. We found that this was due to a lag in the expression of activity in sucrose medium. Using phosphate buffer (50 mM), good rates are now obtained. Generation of H2O2 by rat brain mitochondria required the presence of antimycin A and was dependent on the substrates succinate and glycerol-1-phosphate. Low rates were obtained with NAD+-linked substrates and none with choline, glutamate, and NADH. The Km and Vmax values for H2O2 generation were considerably lower than the corresponding values for the respective dehydrogenase activity, measured by dye reduction. Oxygen-radical scavengers inhibited H2O2 generation, suggesting oxygen radical involvement. Depletion of ubiquinone from mitochondria resulted in loss of H2O2 generation. Reconstitution of such depleted particles with ubiquinone restored the capacity to generate H2O2 in a concentration-dependent manner. Levels of H2O2 production were found to be maximal in cerebellum. Brain mitochondria from rabbit, hamster, mouse, and guinea pig also have the capacity to generate H2O2 on oxidation of glycerol-1-phosphate.  相似文献   

17.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

18.
19.
Using HyPer, a ratiometric GFP-based biosensor, the dynamics of H2O2 in living cells has been studied. It was found that activation of the receptor of the epidermal growth factor (EGF) in epithelial cells leads to sustained generation of intracellular H2O2, which is blocked by apocynin, an inhibitor of the assembly of plasma membrane NADPH oxidase. Apocynin also blocked HeLa cell proliferation induced by EGF, indicating that NADPH oxidase should be involved in the process. However, apocynin failed to alter the kinetics of the EGF-stimulated ERK1/2 activation. It was concluded that NADPH oxidase and intracellular H2O2 are the important downstream targets of the EGF receptor, which mediate the proliferation response by mechanisms distinct from the activation of the classical ERK1/2 MAP-kinase pathway.  相似文献   

20.
H2O2 generation is a limiting step in thyroid hormone biosynthesis. Biochemical studies have confirmed that H2O2 is generated by a thyroid Ca2+/NADPH-dependent oxidase. Decreased H2O2 availability may be another mechanism of inhibition of thyroperoxidase activity produced by thioureylene compounds, as propylthiouracil (PTU) and methimazole (MMI) are antioxidant agents. Therefore, we analyzed whether PTU or MMI could scavenge H2O2 or inhibit thyroid NADPH oxidase activity in vitro. Our results show that PTU and thiourea did not significantly scavenge H2O2. However, MMI significantly scavenged H2O2 at high concentrations. Only MMI was able to decrease the amount of H2O2 generated by the glucose-glucose oxidase system. On the other hand, both PTU and MMI were able to partially inhibit thyroid NADPH oxidase activity in vitro. As PTU did not scavenge H2O2 under the conditions used here, we presume that this drug may directly inhibit thyroid NADPH oxidase. Also, at the concentration necessary to inhibit NADPH oxidase activity, MMI did not scavenge H2O2, also suggesting a direct effect of MMI on thyroid NADPH oxidase. In conclusion, this study shows that MMI, but not PTU, is able to scavenge H2O2 in the micromolar range and that both PTU and MMI can impair thyroid H2O2 generation in addition to their potent thyroperoxidase inhibitory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号