首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7765篇
  免费   1488篇
  国内免费   2421篇
  2024年   9篇
  2023年   243篇
  2022年   176篇
  2021年   340篇
  2020年   475篇
  2019年   491篇
  2018年   462篇
  2017年   451篇
  2016年   460篇
  2015年   458篇
  2014年   415篇
  2013年   490篇
  2012年   381篇
  2011年   410篇
  2010年   373篇
  2009年   446篇
  2008年   502篇
  2007年   549篇
  2006年   532篇
  2005年   452篇
  2004年   440篇
  2003年   373篇
  2002年   348篇
  2001年   332篇
  2000年   312篇
  1999年   271篇
  1998年   254篇
  1997年   182篇
  1996年   149篇
  1995年   141篇
  1994年   118篇
  1993年   101篇
  1992年   101篇
  1991年   82篇
  1990年   80篇
  1989年   57篇
  1988年   32篇
  1987年   35篇
  1986年   36篇
  1985年   17篇
  1984年   23篇
  1983年   17篇
  1982年   22篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 198 毫秒
51.
52.
Adoption of reduced‐impact logging (RIL) methods could reduce CO2 emissions by 30–50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (= 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term ‘RIL‐C’ to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL‐C practices.  相似文献   
53.
Borneo has a perhumid climate but occasional severe droughts have an important impact. Droughts may affect the composition and size structure of plant communities through differential mortality or, via their impact on the availability of plant resources, affect plant–animal interactions. From January to April 1998, northern Borneo suffered a very severe drought linked to the El Niño Southern Oscillation event of 1997–1998. In this article, the impacts of this drought on the rain forest at Lambir Hills National Park, Sarawak, are considered with special reference to a keystone plant group, the figs. Small fires entered the edge of the forest from the roadside, killing saplings, climbers, and understory trees. Community-wide mortality for adult trees was 0–7 times higher than in nondrought years, with larger trees showing a greater proportional increase. In figs, mortality was significantly higher in pioneers, but hemiepiphytes and roadside species were unaffected. Phenology was substantially affected. Leaf and flower/fruit production decreased or ceased during the drought and increased suddenly following renewed rain. Pollinators of dioecious figs became locally extinct during the drought, and other plant–animal interactions may also have been disrupted. The frequency and severity of droughts has increased substantially in the past three decades, and climate models suggest this may be the result of global warming. The impacts of the 1998 drought at Lambir Hills National Park suggest that, should this trend continue, a substantial alteration of habitats and overall loss of biodiversity can be expected in Borneo.  相似文献   
54.
55.
The ~30,000 hectare classical Costa Rican Parque Nacional Santa Rosa has used about 35 years and $107 million to be converted to the 169,000 ha government-NGO hybrid Área de Conservación Guanacaste (ACG). This semi-decentralized conservation entity has today a staff of ~150 paraprofessional resident Costa Ricans, biodeveloping at least 650,000 multicellular species (Eucaryotes) into perpetuity for ACG survival through being integrated with its local, regional, national, and international society. ACG began in 1985 as an ongoing exercise of landscape-level ecosystem rescue and restoration of a continuous swath from 6 km out in the Pacific ocean, across dry forested lowlands, up and over the volcanic Cordillera Guanacaste, and down into the rain-forested Caribbean lowlands. It is being impacted by climate change, yet its diverse ecosystems hold hope for major biodiversity survival, albeit in new community assemblages. It quickly became simultaneously a biophysical challenge and an administratively novel challenge in decentralized conservation in a democratic tropical country. ACG specializes at being managed by on-the-job stimulated and trained residents with minimal formal education, searching for ways to involve ACG in its society without damaging its wildness, and pioneering ways to render wild biodiversity to being a welcome member at society's negotiating table. It continues to pay its bills through government subsidy, generous donors, payments for services, project grants, and huge in-kind contributions from mutualisms. ACG hopes that the concept will spread south–south to other tropical countries while they still have some of their wild biodiversity with which to integrate.  相似文献   
56.
High mountain grasslands offer multiple goods and services to society but are severely threatened by improper land use practices such as abandonment or rapid intensification. In order to reduce abandonment and strengthen the common extensive agricultural practice a sustainable land use management of high mountain grasslands is needed. A spatially detailed yield assessment helps to identify possible meadows or, on the contrary, areas with a low carrying capacity in a region, making it easier to manage these sites. Such assessments are rarely available for remote and inaccessible areas. Remotely sensed vegetation indices are able to provide valuable information on grassland properties. These indices tend, however, to saturate for high biomass. This affects their applicability to assessments of high-yield grasslands.The main aim of this study was to model a spatially explicit grassland yield map and to test whether saturation issues can be tackled by consideration of plant species composition in the modelling process. The high mountain grassland of the subalpine belt (1800 – 2500 m a.s.l.) in the Kazbegi region, Greater Caucasus, Georgia, was chosen as test site for its strong species composition and yield gradients.We first modelled the species composition of the grassland described as metrically scaled gradients in the form of ordination axes by random forest regression. We then derived vegetation indices from Rapid Eye imagery, and topographic variables from a digital elevation model, which we used together with the multispectral bands as predictive variables. For comparison, we performed two yield models, one excluding the species composition maps and one including the species composition map as predictors. Moreover, we performed a third individual model, with species composition as predictors and a split dataset, to produce the final yield map.Three main grassland types were found in the vegetation analysis: Hordeum violaceum-meadows, Gentianella caucasea-grassland and Astragalus captiosus-grassland. The three random forest regression models for the ordination axes explained 64%, 33% and 46% of the variance in species composition. Independent validation of modelled ordination scores against a validation data set resulted in an R2 of 0.64, 0.32 and 0.46 for the first, second and third axes, respectively. The model based on species composition resulted in a R2 = 0.55, whereas the benchmark model showed weaker relationships between yield and the multispectral reflectance, vegetation indices, and topographical parameters (R2 = 0.42). The final random forest yield model used to derive the yield map resulted in 62% variance explained and an R2 = 0.64 between predicted and observed biomass. The results further indicate that high yields are generally difficult to predict with both models.The benefit of including a species composition map as a predictor variable for grassland yield lies in the preservation of ecologically meaningful features, especially the occurrence of high yielding vegetation type of Hordeum violaceum meadows is depicted accurately in the map. Even though we used a gradient based design, sharp boundaries or immediate changes in productivity were visible, especially in small structures such as arable fields or roads (Fig. 6b), making it a valuable tool for sustainable land use management. The saturation effect however, was mitigated by using species composition as predictor variables but is still present at high yields.  相似文献   
57.
Observations on phenology of some representative trees, shrubs, under-shrubs and herbs in a subalpine forest of Uttarakhand, western Himalaya were recorded. With the commencement of favorable growth season in April, occurrence of leaf fall was indicatory growth phenomenon in Quercus semecarpifolia, Q. floribunda and Abies spectabilis. However, active vegetative growth in herbaceous species starts onward April and fruit maturation and seed dehiscence are completed from mid of September to October. In general, vegetative growth and reproductive stages in majority of the studied species seems to be dependent on adequate moisture content and also flowering and fruiting in subalpine plants correlate ambient temperature.  相似文献   
58.
For wild primates, demography studies are increasingly recognized as necessary for assessing the viability of vulnerable populations experiencing rapid environmental change. In particular, anthropogenic changes such as habitat loss and fragmentation can cause ecological and behavioral changes in small, isolated populations, which may, over time, alter population density and demographic structure (age/sex classes and group composition) in fragment populations relative to continuous forest populations. We compared our study population of Endangered black howler monkeys (Alouatta pigra) in 34 forest fragments around Palenque National Park (PNP), Mexico (62 groups, 407 individuals), to the adjacent population in PNP, protected primary forest (21 groups, 134 individuals), and to previous research on black howlers in fragments in our study area (18 groups, 115 individuals). We used χ2 and Mann–Whitney U tests to address the questions: (a) what is the current black howler demographic population structure in unprotected forest fragments around PNP? (b) How does it compare to PNP's stable, continuous population? (c) How has it changed over time? Compared to the PNP population, the fragment populations showed higher density, a significantly lower proportion of multimale groups, and significantly fewer adult males per group. The population's age/sex structure in the fragmented landscape has been stable over the last 17 years, but differed in a higher proportion of multifemale groups, higher density, and higher patch occupancy in the present. In the context of conservation, some of our results may be positive as they indicate possible population growth over time. However, long-term scarcity of adult males in fragments and associated effects on population demographic structure might be cause for concern, in that it may affect gene flow and genetic diversity. The scarcity of adult males might stem from males experiencing increased mortality while dispersing in the fragmented landscape, whereas females might be becoming more philopatric in fragments.  相似文献   
59.
60.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号