首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4121篇
  免费   513篇
  国内免费   910篇
  2023年   94篇
  2022年   79篇
  2021年   127篇
  2020年   209篇
  2019年   180篇
  2018年   184篇
  2017年   190篇
  2016年   216篇
  2015年   178篇
  2014年   203篇
  2013年   217篇
  2012年   175篇
  2011年   239篇
  2010年   161篇
  2009年   226篇
  2008年   242篇
  2007年   252篇
  2006年   206篇
  2005年   206篇
  2004年   152篇
  2003年   177篇
  2002年   155篇
  2001年   129篇
  2000年   144篇
  1999年   108篇
  1998年   87篇
  1997年   94篇
  1996年   78篇
  1995年   85篇
  1994年   72篇
  1993年   80篇
  1992年   80篇
  1991年   59篇
  1990年   61篇
  1989年   43篇
  1988年   46篇
  1987年   39篇
  1986年   33篇
  1985年   40篇
  1984年   31篇
  1983年   28篇
  1982年   30篇
  1981年   16篇
  1980年   23篇
  1979年   19篇
  1978年   10篇
  1977年   12篇
  1976年   10篇
  1975年   6篇
  1973年   5篇
排序方式: 共有5544条查询结果,搜索用时 62 毫秒
51.
Practical application of hard carbon materials in sodium‐ion batteries (SIBs) is largely limited by their low initial coulombic efficiency (ICE), which may be improved by increasing the graphitization degree. However, biomass‐derived hard carbon is usually nongraphitizable and extremely difficult to graphitize by direct heating even at 3000 °C. Herein, a general strategy is reported for fabricating hard carbon materials with graphite crystals at 1300 °C promoted by external graphite that serves as a crystal template for the growth of graphite crystals. The graphite crystals enable the contacted pseudographitic domains with a high‐level ordered structure, large domain size, and low defects, leading to an enhanced ICE. The obtained hard carbon materials with graphite crystals, using the carbonized eggshell membranes, and sucrose‐derived microsphere as precursors, achieve very high ICE of 89% and 91% with reversible capacity of 310 and 301 mA h g?1, respectively. Therefore, using external graphite to promote high‐level ordering pseudographitic domains at low temperature is quite useful to improve ICE for SIB applications.  相似文献   
52.
Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively.  相似文献   
53.
One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency (RUE) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE, we applied genome‐wide association study (GWAS) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker‐trait association identified 94 SNPs significantly associated with yield, agronomic and phenology‐related traits along with RUE and final biomass (BM_PM) at various growth stages that explained 7%–17% of phenotypic variation. Common SNP markers were identified for grain yield, BM_PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight (TGW), BM_PM and RUE but lower grain number (GM2) and harvest index (HI). Our work demonstrates the use of exotic material as a valuable resource to increase YP. It also provides markers for use in marker‐assisted breeding to systematically increase BM_PM, RUE and TGW and avoid the TGW/GM2 and BM_PM/HI trade‐off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.  相似文献   
54.
Open‐circuit voltage (VOC) losses in organic photovoltaics (OPVs) inhibit devices from reaching VOC values comparable to the bandgap of the donor–acceptor blend. Specifically, nonradiative recombination losses (?Vnr) are much greater in OPVs than in silicon or perovskite solar cells, yet the origins of this are not fully understood. To understand what makes a system have high or low loss, an investigation of the nonradiative recombination losses in a total of nine blend systems is carried out. An apparent relationship is observed between the relative domain purity of six blends and the degree of nonradiative recombination loss, where films exhibiting relatively less pure domains show lower ?Vnr than films with higher domain purity. Additionally, it is shown that when paired with a fullerene acceptor, polymer donors which have bulky backbone units to inhibit close π–π stacking exhibit lower nonradiative recombination losses than in blends where the polymer can pack more closely. This work reports a strategy that ensures ?Vnr can be measured accurately and reports key observations on the relationship between ?Vnr and properties of the donor/acceptor interface.  相似文献   
55.
Water wave energy is a promising renewable energy source that may alleviate the rising concerns over current resource depletion, but it is rarely exploited due to the lack of efficient energy harvesting technologies. In this work, a hybrid system with a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) based on an optimized inner topological structure is reported to effectively harvest water wave energy. The TENG with etched polytetrafluoroethylene films and Cu electrodes utilizing the contact‐freestanding mode is designed into a cubic structure, in which the EMG is well hybridized. An integration of TENG and EMG achieves mutual compensation of their own merits, enabling the hybrid system to deliver satisfactory output over a broad range of operation frequency. The output performance of TENG with varied inner topological structures is experimentally and theoretically compared, and a concept is proposed to further clarify the energy conversion efficiency, which should be considered in designing energy harvesting devices. The influences of oscillation frequency, amplitude, and dielectric materials on the output performance of the hybrid system are comprehensively studied on different platforms. Furthermore, the optimum operation frequency ranges for TENG and EMG are concluded. The proposed hybrid nanogenerator renders an effective approach toward large‐scale blue energy harvesting over a broad frequency range.  相似文献   
56.
Polymer dielectrics such as poly(vinylidene fluoride) (PVDF) have drawn tremendous attention in high energy density capacitors because of their high dielectric constant and ease of processing. However, the discharged energy density attained with these materials is restrained by the inferior breakdown strength and electric resistivity. Herein, PVDF composite films with a nanosized interlayer of assembled boron nitride nanosheets (BNNSs) that is aligned along the in‐plane direction are prepared through a simple layer‐by‐layer solution‐casting process. Compared to the pristine PVDF, the composite films show remarkably suppressed leakage current, resulting in a high breakdown strength and a superior energy density which are 136% and 275%, respectively, that of the pristine PVDF. The experimental results and computational simulations reveal that the compact and successive interlayer of assembled BNNSs can largely mitigate the local field distortion and block the propagation of electrical treeing, which is advantageous over the conventional dielectric polymer nanocomposites. Notably, unlike the previous dielectric polymer nanocomposites that are usually incorporated with a high volume fraction of nanofillers, i.e., 5–10 vol%, the present composites contain only an extremely low content of nanfillers, e.g., 0.16 vol%. These findings offer a novel paradigm for fabricating high energy density and high efficiency polymer dielectrics.  相似文献   
57.
Aims Land cover changes can disrupt water balance and alter the partitioning of precipitation into surface runoff, evapotranspiration and groundwater recharge. The widely plantedEucalyptustrees in south-western China have the potential to bring about hydrologic impacts. Our research aims to elucidate the hydrologic balance characteristics of the introduced exoticEucalyptus grandis×Eucalyptus urophyllaplantation and to assess whether its high productivity results from high water use efficiency (WUE) or large water consumption.  相似文献   
58.
Phosphorus (P) use in global food and bioenergy production needs to become more efficient and sustainable to reduce environmental impacts and conserve a finite and critical resource (Carpenter & Bennett, Environmental Research Letters, 2011, 6, 014009; Springmann et al., Nature, 2018, 562, 519). Sugarcane is one crop with a large P footprint because production is centered on P‐fixing soils with low P availability (Roy et al., Nature Plants, 2016, 2, 16043; Withers et al., Scientific Reports, 2018, 8, 2537). As global demand for processed sugar and bioethanol continues to increase, we advocate that improving P efficiency could become a key sustainability goal for the sugarcane industry. Here, we applied the 5R global P stewardship framework (Withers et al., Ambio, 2015, 44, 193) to identify more sustainable options to manage P in Brazilian sugarcane production. We show that current inputs of P fertilizer to the current crop area could be reduced by over 305 Gg, or 63%, over the next three decades by reducing unnecessary P fertilizer use, better utilization of recyclable bioresources and redesigning recommendation systems. Adoption of these 5R options would save the sugarcane industry in Brazil 528 US$ million and help safeguard global food and energy security.  相似文献   
59.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   
60.
西双版纳地区丛林式橡胶林内植物的水分利用策略   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号