首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   7篇
  国内免费   33篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   9篇
  2019年   16篇
  2018年   14篇
  2017年   15篇
  2016年   14篇
  2015年   10篇
  2014年   19篇
  2013年   65篇
  2012年   20篇
  2011年   15篇
  2010年   9篇
  2009年   20篇
  2008年   24篇
  2007年   19篇
  2006年   15篇
  2005年   24篇
  2004年   22篇
  2003年   18篇
  2002年   18篇
  2001年   15篇
  2000年   11篇
  1999年   13篇
  1998年   8篇
  1997年   16篇
  1996年   11篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有497条查询结果,搜索用时 17 毫秒
51.
This article provides an overview of the development, theoretical basis, regulatory status, and application of the U.S. Environmental Protection Agency's (USEPA's) Equilibrium Partitioning Sediment Benchmarks (ESBs) for PAH mixtures. ESBs are compared to other sediment quality guidelines (SQGs) for PAHs. Data that examine the ability of the ESB approach to predict toxic effects to invertebrates are discussed. A USEPA draft methodology for the development of site-specific ESBs that takes into account the limited bioavailability of PAHs at certain sites is discussed. Research is presented that compares the ability of ESBs and site-specific ESBs to predict the toxicity of sediments collected from manufactured gas plants (MGPs). Site-specific ESBs that accounted for adsorption of PAHs onto black carbon were better predictors of the toxicity of sediments from MGP sites than ESBs that did not account for adsorption to black carbon.  相似文献   
52.
Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.  相似文献   
53.
Sandy clay loam soil was contaminated with 5000 mg kg−1 diesel, and amended with nitrogen (15.98 atom% 15N) at 0, 250, 500, and 1000 mg kg−1 to determine gross rates of nitrogen transformations during diesel biodegradation at varying soil water potentials. The observed water potential values were −0.20, −0.47, −0.85, and −1.50 MPa in the 0, 250, 500, and 1000 mg kg−1 nitrogen treatments respectively. Highest microbial respiration occurred in the lowest nitrogen treatment suggesting an inhibitory osmotic effect from higher rates of nitrogen application. Microbial respiration rates of 185, 169, 131, and 116 mg O2 kg−1 soil day−1 were observed in the 250, 500, control and 1000 mg kg−1 nitrogen treatments, respectively. Gross nitrification was inversely related to water potential with rates of 0.2, 0.04, and 0.004 mg N kg−1 soil day−1 in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. Reduction in water potential did not inhibit gross nitrogen immobilization or mineralization, with respective immobilization rates of 2.2, 1.8, and 1.8 mg N kg−1 soil day−1, and mineralization rates of 0.5, 0.3, and 0.3 mg N kg−1 soil day−1 in the 1000, 500, and 250 mg kg−1 nitrogen treatments, respectively. Based on nitrogen transformation rates, the duration of fertilizer contribution to the inorganic nitrogen pool was estimated at 0.9, 1.9, and 3.2 years in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. The estimation was conservative as ammonium fixation, gross nitrogen immobilization, and nitrification were considered losses of fertilizer with only gross mineralization of organic nitrogen contributing to the most active portion of the nitrogen pool.  相似文献   
54.
不同有机肥对土壤镉锌生物有效性的影响   总被引:4,自引:0,他引:4  
在南方典型稻田设置连续4年施用猪粪、鸡粪、稻草的定位试验,监测施用不同有机肥条件下土壤及水稻植株镉(Cd)、锌(Zn)含量的变化,研究有机肥对土壤Cd、Zn活性及其交互作用的影响.结果表明: 施用有机肥(猪粪、鸡粪、稻草)对土壤全Cd、有效态Cd含量及Cd活性皆无显著影响,但有增加土壤Cd全量的趋势,且显著增加土壤全Zn、有效态Zn含量及Zn活性.施用猪粪、鸡粪、稻草皆可降低稻米Cd含量,降Cd效果为猪粪>鸡粪>稻草,猪粪处理水稻稻米、茎、叶Cd含量分别比对照下降37.5%、44.0%、36.4%;鸡粪处理水稻米、茎、叶Cd含量分别比对照下降22.5%、33.8%、22.7%;而稻草处理水稻米Cd含量比对照下降7.5%,但茎、叶Cd含量比对照分别增加8.2%、22.7%;施用猪粪、鸡粪降低稻米Cd含量主要是降低了水稻植株对土壤Cd的富集,而施用稻草则主要是降低了水稻茎Cd向稻米的转运.施用有机肥还增加了水稻茎Zn含量,施用猪粪、鸡粪、稻草的水稻茎Zn含量比单施化肥分别增加53.4%、41.2%、13.9%,但对水稻稻米、叶Zn含量无显著影响.Zn、Cd在土壤、植株茎中皆表现出显著的拮抗作用,土壤及水稻茎Zn含量的增加显著抑制了水稻米、茎、叶对Cd的吸收积累,且随土壤有效态Zn/Cd含量比值的增加,Zn、Cd竞争土壤吸附不是抑制水稻吸收积累Cd的主控因子,而Zn、Cd竞争吸收才是影响水稻吸收积累Cd的主控因子.  相似文献   
55.
The identification of a potent, selective, and orally available MK2 inhibitor series is described. The initial absence of oral bioavailability was successfully tackled by moving the basic nitrogen of the spiro-4-piperidyl moiety towards the electron-deficient pyrrolepyridinedione core, thereby reducing the pKa and improving Caco-2 permeability. The resulting racemic spiro-3-piperidyl analogues were separated by chiral preparative HPLC, and the activity towards MK2 inhibition was shown to reside mostly in the first eluting stereoisomer. This led to the identification of new MK2 inhibitors, such as (S)-23, with low nanomolar biochemical inhibition (EC50 7.4 nM) and submicromolar cellular target engagement activity (EC50 0.5 μM).  相似文献   
56.
The discovery, of a series of 2-Cl-5-heteroaryl-benzamide antagonists of the P2X(7) receptor via parallel medicinal chemistry is described. Initial analogs suffered from poor metabolic stability and low Vd(ss). Multi parametric optimization led to identification of pyrazole 39 as a viable lead with excellent potency and oral bioavailability. Further attempts to improve the low Vd(ss) of 39 via introduction of amines led to analogs 40 and 41 which maintained the favorable pharmacology profile of 39 and improved Vd(ss) after iv dosing. But these analogs suffered from poor oral absorption, probably driven by poor permeability.  相似文献   
57.
Eribulin mesylate (Halaven™), a totally synthetic analog of the marine polyether macrolide halichondrin B, has recently been approved in the United States as a treatment for breast cancer. It is also currently under regulatory review in Japan and the European Union. Our continuing medicinal chemistry efforts on this scaffold have focused on oral bioavailability, brain penetration and efficacy against multidrug resistant (MDR) tumors by lowering the susceptibility of these compounds to P-glycoprotein (P-gp)-mediated drug efflux. Replacement of the 1,2-amino alcohol C32 side chain of eribulin with fragments neutral at physiologic pH led to the identification of analogs with significantly lower P-gp susceptibility. The analogs maintained low- to sub-nM potency in vitro against both sensitive and MDR cell lines. Within this series, increasing lipophilicity generally led to decreased P-gp susceptibility. In addition to potency in cell culture, these compounds showed in vivo activity in mouse xenograft models.  相似文献   
58.
Sulphur fractionation and availability to plants are poorly understood in calcareous soils. Sixty-four calcareous soils containing varying amounts of CaCO3 were collected from ten provinces in China and their S fractions determined. Organic S was the predominant fraction of S, accounting for on average 77% of the soil total S. The amounts of adsorbed sulphate were found to be negligible. 1 M HCl extracted substantially more sulphate than either 0.01 M CaCl2 or 0.016 M KH2PO4, indicating the existence of water-insoluble but acid-soluble sulphate, probably in the form of sulphate co-precipitated with CaCO3. The concentrations of water-insoluble sulphate correlated positively with the contents of CaCO3 and accounted for 0.03–40.3% (mean 11.7%) of soil total S. To test the bioavailability of water-insoluble sulphate, a sulphate-CaCO3 co-precipitate labelled with 35S was prepared and added to a calcareous soil in a pot experiment with either NH4+ or NO3 as the N source. In 29 days, wheat plants took up 10.6% and 3.0% of the 35S added to the soil in the NH4+ and NO3 treatments, respectively. At the end of the pot experiment, the decrease of water-insoluble, acid-soluble, sulphate was more apparent in the NH4+ than in the NO3 treatment. The results indicate that sulphate co-precipitated with CaCO3 in calcareous soils may become partly available for plant uptake, depending on rhizosphere pH, if the field precipitate is similar to the laboratory prepared sample studied.  相似文献   
59.
The use cyclodextrins for the intensification of bioremediation by improving the mobility and bioavailability of contaminants has recently been studied. In this work, the role of randomly methylated -cyclodextrin in the bioremediation of soils contaminated with transformer oil was studied both in bench scale bioreactors and through field experiments. The aims of this research were to (a) establish the scientific background of a cyclodextrin-based soil bioremediation technology, (b) demonstrate its feasibility and effectiveness in the field, and (c) develop an integrated methodology, consisting of a combination of physical, chemical, biological and ecotoxicological analytical methods, for efficiently monitoring the technology performances. The stepwise increasing scale of the experiments and the application of the integrated analytical methodology supported the development of a scientifically established new technology and the identification of the advantages and the limitations of its application in the field. At each phase of the study, randomly methylated -cyclodextrin was found to significantly enhance the bioremediation and detoxification of the transformer oil-contaminated soils employed by increasing the bioavailability of the pollutants and the activity of indigenous microorganisms.  相似文献   
60.
A laboratory study was conducted to investigate metal transport and accumulation within soils contaminated with As, Cr, and Cu from CCA-treated wood leachates. New blocks of CCA-treated wood were leached using synthetic rainwater. Soil columns were constructed and filled with three different soils, including a sandy soil, an organic soil and a clay soil. The leachate was applied intermittently until 80 pore volumes were eluted through each column. Metal concentrations (Cu, Cr, and As) were measured in the leachate before passage through the columns as well as in each elutriate fraction collected. Chemical analysis was complemented with toxicity testing using Ceriodaphnia dubia, Selenastrum capricornutum, and MetPLATE?. Following application of 80 pore volumes of leachate, the columns were dissected and the profile of the metal concentrations within each column was determined. A comparison of the arsenic, chromium and copper leaching patterns found arsenic to be the most mobile, with copper the most retained in the soil columns (As < Cr < Cu). Transport patterns of As differed in the three soil types, with observed mobility highest in the sandy soil and lowest in the clay soil. The three metals accumulated in the top layer of soil. Arsenic posed the greatest risk when soil concentrations were compared to risk-based target levels. Although metals were detected in soil elutriates, no toxicity was detected in any of the soil column elutriates using any of the three toxicity assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号