首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   19篇
  国内免费   8篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   9篇
  2016年   7篇
  2015年   6篇
  2014年   9篇
  2013年   3篇
  2012年   11篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   13篇
  2002年   8篇
  2001年   11篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
排序方式: 共有183条查询结果,搜索用时 17 毫秒
41.
Outdoor experiments carried out in Florence, Italy (latitude 43.8° N, longitude 11.3° E), using tubular photobioreactors have shown that in summer the average net productivity of a Spirulina platensis culture grown at the optimal temperature of 35 °C was superior by 23% to that observed in a culture grown at 25 °C. The rates of night biomass loss were higher in the culture grown at 25 °C (average 7.6% of total dry weight) than in the one grown at 35 °C (average 5%). Night biomass loss depended on the temperature and light irradiance at which the cultures were grown, since these factors influenced the biomass composition. A net increase in carbohydrate synthesis occurred when the culture was grown at a low biomass concentration under high light irradiance or at the suboptimal temperature of 25 °C. Excess carbohydrate synthesized during the day was only partially utilized for night protein synthesis.  相似文献   
42.
Photosynthetic activity and growth physiology of Spirulina platensis (Nordstedt) Geitler cultures maintained at ultrahigh cell densities (i.e. above 100 mg chlorophyll-L?1) in a newly designed photobioreactor were investigated. Nitrogen (NaNO3) in standard Zarouk medium was characterized as a major nutrient-limiting factor in such cultures. The effect of ultrahigh cell density on photoinhibition of photosynthesis, as reflected by chlorophyll fluorescence and photosynthetic oxygen evolution, was studied: elevating the population density may arrest photoinhibition induced by high photon flux density, as well as low temperature. The relationship between incident irradiance and oxygen production rate was linear in situ for cultures at the optimal cell density, indicating that light limitation rather than light saturation or photoinhibition is the dominant condition outdoors in cultures of ultrahigh cell densities. In contrast with other reports, the extent of biomass loss at night due mainly to dark respiration was found to be relatively small when cell density was optimal, exerting only a minor effect on overall net productivity. Measurements of oxygen consumption at night revealed low rates of respiration, which may be explained by the low value of the volumetric mass transfer coefficient (KLa) of oxygen. Hence, reduced oxygen tension may play a role in preventing full expression of the respiratory potential in ultrahigh cell density cultures in which photoadaptive strategy may explain cell composition. Ultrahigh cell densities optimized with respect to the intensity of the light source, the length of the light path, and the extent of stirring represent the key for obtaining high output rates of cell mass and some natural products.  相似文献   
43.
44.
Cyclotides are a family of backbone‐cyclized cystine‐knot‐containing macrocyclic peptides from plants that possess extremely interesting biological activities. Suspension cultures of Oldenlandia affinis, a model plant containing cyclotides, were scaled‐up from shake flask to photobioreactor operation in order to produce these plant peptides under controlled conditions. Cell growth was highly dependent on inoculation culture; cell density as well as culture age had an effect on the growth rates and thus affected the kalata B1 productivity of the bioprocess. In a 25 l scale bioreactor the maximum doubling time was about 1.12 days compared to 2.24 days in shake flasks. The accumulation of kalata B1 of 0.09 mg g?1 DW and 0.07–0.10 mg g?1 DW respectively, however, was on a similar level during the corresponding stationary growth phases in both bioreactor and flask processes. An adjustment of cell culture growth via culture preparation and inoculum density to high cyclotide accumulation results in an estimated output during the most productive retardation phase of about 21 mg kalata B1 per day in the 25 l system. This makes the biotechnological cyclotide synthesis under GMP conditions a competitive production tool compared to field cultivation, chemical, and recombinant synthesis in drug discovery for structure analysis and bioactivity assays.  相似文献   
45.
The biosynthesis and accumulation of cyanophycin in the thermophilic cyanobacterium Synechococcus sp. MA19 were studied. By growing the cells in a 80-l closed tubular photobioreactor under controlled conditions, the cells accumulated cyanophycin amounting up to 3.5% of the dry cell matter. The cyanophycin was purified and chemical analysis showed that it was composed of arginine and aspartic acid occurring at a molar ratio of 1:0.9. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a broad distribution of the apparent molecular masses ranging from 20 to 130 kDa with a maximum at 50 kDa. During a three-step purification procedure involving ion exchange chromatography and gel filtration, the cyanophycin synthetase from strain MA19 was purified 144-fold to electrophoretic homogeneity. It consisted of only one single type of subunit exhibiting an apparent molecular mass of 130 kDa. The enzyme catalyzed the polymerization of arginine and aspartate at elevated temperatures and was even active at 80 degrees C.  相似文献   
46.
Enclosed outdoor photobioreactors need to be developed and designed for large-scale production of phototrophic microorganisms. Both light regime and photosynthetic efficiency were analyzed in characteristic examples of state-of-the-art pilot-scale photobioreactors. In this study it is shown that productivity of photobioreactors is determined by the light regime inside the bioreactors. In addition to light regime, oxygen accumulation and shear stress limit productivity in certain designs. In short light-path systems, high efficiencies, 10% to 20% based on photosynthetic active radiation (PAR 400 to 700 nm), can be reached at high biomass concentrations (>5 kg [dry weight] m(-3)). It is demonstrated, however, that these and other photobioreactor designs are poorly scalable (maximal unit size 0.1 to 10 m(3)), and/or not applicable for cultivation of monocultures. This is why a new photobioreactor design is proposed in which light capture is physically separated from photoautotrophic cultivation. This system can possibly be scaled to larger unit sizes, 10 to >100 m(3), and the reactor liquid as a whole is mixed and aerated. It is deduced that high photosynthetic efficiencies, 15% on a PAR-basis, can be achieved. Future designs from optical engineers should be used to collect, concentrate, and transport sunlight, followed by redistribution in a large-scale photobioreactor.  相似文献   
47.
The optimization of carbon use in pilot-scale outdoor tubular photobioreactors is investigated in this study. The behavior of a 0.20-m(3) tubular photobioreactor was studied, with and without algae, by steady-state and pulse dynamic-response analysis experiments. A model of the system was obtained and implemented in a programmable control unit and was used to control the reactor under normal production conditions. Results showed that, using and on-off control, the mean daily CO(2) flow in the reactor was 0.86 g min(-1), 19.7% of this being lost. By using a predictive control algorithm the mean daily CO(2) flow was reduced to 0.74 g min(-1), with losses being reduced to 15.6%. In this case, pH tracking was not adequate, especially at the beginning and end of the daylight period, because the variation in solar irradiance was not considered. Taking solar irradiance into account resulted in better performance, with mean daily CO(2) flow reduced to 0.70 g min(-1), and carbon losses reduced to 5.5%. pH tracking was improved and valve actuation was reduced. Improvement of pH control reduced pH gradients in the culture, which increased the photosynthesis rate and biomass productivity of the system. Biomass productivity increased from 1.28 to 1.48 g L(-1) day-(1) when on-off control was replaced by model-based predictive control plus solar irradiance effect mode. Implementation of this methodology in outdoor photobioreactors can increase productivity by 15% and reduce the cost of producing biomass by >6%. Clearly, application of effective control techniques, such as model-based predictive control (MPC), must be considered when developing these processes.  相似文献   
48.
Light intensity is a crucial factor that determines the growth of photosynthetic cells. This study analyzed the light distribution in a photobioreactor by processing images, captured with a digital camera, of a rectangular photobioreactor containing Synechococcus sp. PCC6801 as a model microorganism. The gray-scale images obtained clearly demonstrate the variation of the light-distribution profiles upon changing cell concentrations and external light intensity. Image-processing techniques were also used to predict the cell density in the photobioreactor. By analyzing the digitized image data with a neural network model, we were able to predict the cell concentrations in the photobioreactor with a <5% error.  相似文献   
49.
Macrophytic marine red algae are a unique source of novel and bioactive terpenoids, including halogenated monoterpenes. Biomass and halogenated monoterpene production by regenerated microplantlet suspension cultures derived from the red alga Ochtodes secundiramea were studied within a perfusion airlift photobioreactor. Photobioreactor cultivations were carried out at 26 degrees C, 140 microE m(-2)s(-1) light intensity, 0.3 air L(-1) culture min(-1) aeration (3500 ppm CO(2)), and ESS/seawater medium perfusion rate of 0.2 L medium L(-1) culture d(-1). Macronutrient concentrations in the perfusion medium were adjusted to provide nitrate delivery rates of 0.0063, 0.077, and 0.74 mmol L(-1) d(-1) at a fixed N:P ratio of 19:1. Growth was maximized at the highest nutrient delivery rate, where 10 g dry biomass L(-1) culture was achieved after 30 days of cultivation. GC-MS analysis of dichloromethane extracts from cell biomass revealed that O. secundiramea microplantlets produced myrcene, three acyclic halogenated monoterpenes (10-bromomyrcene, 10-bromo-7-chloromyrcene, 3,10-dibromomyrcene), and one cyclic halogenated monoterpene (6-bromo-1,2,8-trichloro-3,4-ochtodene). 10E-bromomyrcene levels were much higher than those of its isomer 10Z-bromomyrcene, demonstrating stereoselective halogenation. Maximum yields of 10E-bromomyrcene and 6-bromo-1,2,8-trichloro-3,4-ochtodene were 15 and 13 micromol/g dry cell mass, respectively. Increasing the rate of nutrient delivery increased the accumulation of myrcene and 10-bromomyrcene during the first 14 days in culture. Furthermore, the yield selectivity toward higher halogenated monoterpenes increased as the rate of nutrient delivery decreased. From this data, a biogenic scheme was proposed where cyclic and acyclic halogenated monoterpenes are derived from sequential halogenation of myrcene, their common precursor.  相似文献   
50.
CO2 fixation by microalgae has emerged as a promising option for CO2 mitigation. Intensive research work has been carried out to develop a feasible system for removing CO2 from industrial exhaust gases. However, there are still several challenging points to overcome in order to make the process more practical. In this paper, recent research activities on three key technologies of biological CO2 fixation, an identification of a suitable algal strain, development of high efficient photobioreactor and utilization of algal cells produced, are described. Finally the barriers, progress, and prospects of commercially developing a biological CO2 fixation process are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号