首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1459篇
  免费   57篇
  国内免费   70篇
  2024年   1篇
  2023年   13篇
  2022年   12篇
  2021年   28篇
  2020年   37篇
  2019年   23篇
  2018年   25篇
  2017年   15篇
  2016年   24篇
  2015年   49篇
  2014年   88篇
  2013年   68篇
  2012年   85篇
  2011年   58篇
  2010年   62篇
  2009年   80篇
  2008年   98篇
  2007年   94篇
  2006年   100篇
  2005年   97篇
  2004年   69篇
  2003年   68篇
  2002年   63篇
  2001年   58篇
  2000年   68篇
  1999年   38篇
  1998年   50篇
  1997年   28篇
  1996年   35篇
  1995年   19篇
  1994年   11篇
  1993年   12篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有1586条查询结果,搜索用时 31 毫秒
41.
42.
43.
The duration of nocturnal melatonin secretion reaches its minimum in summer, a physiological event that is likely related with the diminished sow fertility and delayed puberty typically observed in this season. Melatonin exerts its function by binding two different receptors named as MTNR1A and MTNR1B. Interestingly, the MTNR1A gene is located on a chromosome SSC17 region where QTL for prolificacy traits have been detected in previous studies. In this work, we have found a synonymous T162C polymorphism at exon 2 of the pig MTNR1A gene. An association analysis between this polymorphism and sow prolificacy in an Iberian ×  Meishan intercross was performed. The utilization of four statistical models of increasing complexity demonstrated that the MTNR1A gene has both additive and dominant effects on total number of born piglets (TNB) and number of piglets born alive (NBA). Additive effects were significant in summer (TNB, P < 0.01; NBA, P < 0.001), whereas dominant effects reached significance both in fall (TNB, P < 0.01; NBA, P < 0.05) and in winter (TNB, P < 0.001; NBA, P < 0.05). The seasonal variation observed for MTNR1A additive and dominant effects might be produced by the influence of photoperiod on the pattern and duration of melatonin secretion. These results illustrate that the complex interaction between genotype and environment can be an important source of phenotypic variation of reproductive traits.  相似文献   
44.
The wild progenitors of cultivated rice, Oryza nivara and Oryza rufipogon , provide an experimental system for characterizing the genetic basis of adaptation. The evolution of annual O. nivara from a perennial ancestor resembling its sister species, O. rufipogon , was associated with an ecological shift from persistently wet to seasonally dry habitats. Here we report a quantitative trait locus (QTL) analysis of phenotypic differentiation in life history, mating system, and flowering time between O. nivara and O. rufipogon . The exponential distribution of effect sizes of QTL fits the prediction of a recently proposed population genetic model of adaptation. More than 80% of QTL alleles of O. nivara acted in the same direction of phenotypic evolution, suggesting that they were fixed under directional selection. The loss of photoperiod sensitivity, which might be essential to the survival of the ancestral populations of O. nivara in the new environment, was controlled by QTL of relatively large effect. Mating system evolution from cross- to self-fertilization through the modification of panicle and floral morphology was controlled by QTL of small-to-moderate effect. The lack of segregation of the recessive annual habit in the F2 mapping populations suggested that the evolution of annual from perennial life form had a complex genetic basis. The study captured the genetic architecture for the adaptive origin of O. nivara and provides a foundation for rigorous experimental tests of population genetic theories of adaptation.  相似文献   
45.
作物耐旱性QTL定位和分析的思路   总被引:1,自引:1,他引:0  
干旱是非生物胁迫中对作物生长和产量影响最严重的胁迫之一.作物的耐旱性受数量性状位点(QTL)的控制,存在复杂的基因/QTL互作和与环境的互作.对作物耐旱相关性状QTL进行定位和分析是耐旱研究的重点之一.本文通过对目前研究中涉及到的作物耐旱性特点、耐旱QTL分析的技术路线与新方法,表型鉴定以及耐旱性QTL互作分析等方面进行了比较系统的阐述,旨在为作物耐旱性QTL定位及未来的分子标记辅助选择提供有益的借鉴.  相似文献   
46.
Although heterosis is widely exploited in agriculture, a clear understanding of its genetic bases is still elusive. This work describes the development of maize recombinant near-isogenic lines (NILs) for the mendelization of six heterotic QTL previously identified based on a maize (Zea mays L.) RIL population. The efficient and inexpensive strategy adopted to generate sets of NILs starting from QTL-specific residual heterozygous lines (RHLs) is described and validated. In particular, we produced nine pairs of recombinant NILs for all six QTL starting from RHLs F4:5 originally obtained during the production of the RIL population mentioned above. Whenever possible, two different NIL pairs were generated for each QTL. The efficiency of this procedure was tested by analyzing two segregating populations for two of the selected heterotic QTL for plant height, yield per plant and ears per plant. Both additive and dominant effects were observed, consistently with the presence of the QTL within the introgressed regions. Refinement of QTL detection was consistent with previous observations in terms of effects and position of the considered QTL. The genetic material developed in this work represents the starting point for QTL fine mapping aimed at understanding the genetic bases of hybrid vigor in maize. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
47.
Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to characterize the responses of seedlings to low P availability and to identify QTLs for root traits, biomass, and plant height under P-deficiency and P-sufficiency conditions. Plant height, total dry weight, shoot dry weight, and root number were inhibited under P-deficiency, whereas maximum root length (MRL) and root-shoot ratio (RS) were induced by P-deficiency stress. Relative MRL (RMRL, the ratio of MRL under P-deficiency to MRL under P-sufficiency con- dition) and relative RS (RRS) were used to evaluate P-deficiency tolerance at the seedling stage. A total of 24 additive QTLs and 29 pairs of epistatic QTLs were detected, but only qRN4 was detected in both conditions. This suggested that different mechanisms may exist in both P supply levels. QTLs for adaptive traits (RMRL, RRS, RRV, and RRDW) and qRN4 consistently expressed to increase trait stability may contribute to P-deficiency tolerance. Twelve intervals were cluster regions of QTLs for P-deficiency tolerance, and one QTL (qRRSS) showed pleiotropic effects on P-deficiency tolerance and drought tolerance. These interesting QTLs can be used in marker-assisted breeding through the target ILs.  相似文献   
48.
Drought stress has long been a major constraint in maintaining yield stability of soybean (Glycine max (L.) Merr.) in rainfed ecosystems. The identification of consistent quantitative trait loci (QTL) involving seed yield per plant (YP) and drought susceptibility index (DSI) in a population across different environments would therefore be important in molecular marker-assisted breeding of soybean cultivars suitable for rainfed regions. The YP of a recombinant line population of 184 F2:7:11 lines from a cross of Kefengl and Nannong1138-2 was studied under water-stressed (WS) and well-watered (WW) conditions in field (F) and greenhouse (G) trials, and DSI for yield was calculated in two trials. Nineteen QTLs associated with YP-WS and YP-WW, and 10 QTLs associated with DSI, were identi- fied. Comparison of these QTL locations with previous findings showed that the majority of these regions control one or more traits re- lated to yield and other agronomic traits. One QTL on molecular linkage group (MLG) K for YP-F, and two QTLs on MLG C2 for YP-G, remained constant across different water regimes. The regions on MLG C2 for YP-WW-F and MLG H for YP-WS-F had a pleiotropic effect on DSI-F, and MLG A1 for YP-WS-G had a pleiotropic effect on DSI-G. The identification of consistent QTLs for YP and DSI across different environments will significantly improve the efficiency of selecting for drought tolerance in soybean.  相似文献   
49.
To date, most statistical developments in QTL detection methodology have been directed at continuous traits with an underlying normal distribution. This paper presents a method for QTL analysis of non-normal traits using a generalized linear mixed model approach. Development of this method has been motivated by a backcross experiment involving two inbred lines of mice that was conducted in order to locate a QTL for litter size. A Poisson regression form is used to model litter size, with allowances made for under- as well as over-dispersion, as suggested by the experimental data. In addition to fixed parity effects, random animal effects have also been included in the model. However, the method is not fully parametric as the model is specified only in terms of means, variances and covariances, and not as a full probability model. Consequently, a generalized estimating equations (GEE) approach is used to fit the model. For statistical inferences, permutation tests and bootstrap procedures are used. This method is illustrated with simulated as well as experimental mouse data. Overall, the method is found to be quite reliable, and with modification, can be used for QTL detection for a range of other non-normally distributed traits.  相似文献   
50.
Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two‐step experimental design for detecting QTL in mass‐spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full‐sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half‐sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号