首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   89篇
  国内免费   47篇
  2024年   1篇
  2023年   8篇
  2022年   3篇
  2021年   11篇
  2020年   25篇
  2019年   34篇
  2018年   34篇
  2017年   41篇
  2016年   27篇
  2015年   25篇
  2014年   28篇
  2013年   58篇
  2012年   42篇
  2011年   39篇
  2010年   30篇
  2009年   34篇
  2008年   41篇
  2007年   54篇
  2006年   63篇
  2005年   54篇
  2004年   33篇
  2003年   45篇
  2002年   44篇
  2001年   51篇
  2000年   31篇
  1999年   23篇
  1998年   24篇
  1997年   23篇
  1996年   12篇
  1995年   12篇
  1994年   13篇
  1993年   15篇
  1992年   13篇
  1991年   27篇
  1990年   16篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1986年   15篇
  1985年   11篇
  1984年   11篇
  1983年   4篇
  1982年   13篇
  1981年   14篇
  1980年   8篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
排序方式: 共有1151条查询结果,搜索用时 93 毫秒
31.
32.
33.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   
34.
Recognition that beavers are integral components of stream ecosystems has resulted in an increase in beaver‐mediated habitat restoration projects. Beaver restoration projects are frequently implemented in degraded stream systems with little or no beaver activity. However, selection of restoration sites is often based on habitat suitability research comparing well‐established beaver colonies to unoccupied stream sections or abandoned colonies. Because beavers dramatically alter areas they occupy, assessing habitat conditions at active colonies may over‐emphasize habitat characteristics that are modified by beaver activity. During 2015–2017, we conducted beaver activity surveys on streams in the upper Missouri River watershed in southwest Montana, United States, to investigate habitat selection by beavers starting new colonies in novel areas. We compared new colony locations in unmodified stream segments to unsettled segments to evaluate conditions that promoted colonization. Newly settled stream segments had relatively low gradients (β ± SE = ?0.72 ± 0.27), narrow channels (β = ?1.31 ± 0.46), high channel complexity (β = 0.76 ± 0.42), high canopy cover of woody riparian vegetation (β = 0.56 ± 0.21), and low‐lying areas directly adjacent to the stream (β = 0.36 ± 0.24), where β denotes covariate effect sizes. Habitat selection patterns differed between our new settlement site analysis and an analysis of occupied versus unoccupied stream segments, suggesting that assessing habitat suitability based on active colonies may result in misidentification of suitable site conditions for beaver restoration. Our research provides recommendations for beaver restoration practitioners to select restoration sites that will have the highest probability of successful colony establishment.  相似文献   
35.
Animal populations are spatially structured in heterogeneous landscapes, in which local patches with differing vital rates are connected by dispersal of individuals to varying degrees. Although there is evidence that vital rates differ among local populations, much less is understood about how vital rates covary among local patches in spatially heterogeneous landscapes. In this study, we conducted a nine-year annual mark–recapture survey to characterize spatial covariation of survival and growth for two Japanese native salmonids, white-spotted charr Salvelinus leucomaenis japonicus and red-spotted masu salmon Oncorhynchus masou ishikawae, in a headwater stream network composed of distinctly different tributary and mainstem habitats. Spatial structure of survival and growth differed by species and age class, but results provided support for negative covariation between vital rates, where survival was higher in the tributary habitat but growth was higher in the mainstem habitat. Thus, neither habitat was apparently more important than the other, and local habitats with complementary vital rates may make this spatially structured population less vulnerable to environmental change (i.e. portfolio effect). Despite the spatial structure of vital rates and possibilities that fish can exploit spatially distributed resources, movement of fish was limited due partly to a series of low-head dams that prevented upstream movement of fish in the study area. This study shows that spatial structure of vital rates can be complex and depend on species and age class, and this knowledge is likely paramount to elucidating dynamics of spatially structured populations.  相似文献   
36.
Studies that assess the importance of riparian habitats in maintaining diversity of herpetofaunal assemblages in tropical dry forests are limited. We examined changes in abundance, diversity and composition of anuran, lizard and snake assemblages along stream edge–upslope gradients in conserved and disturbed areas of tropical dry forest on the Pacific coast of México. We sampled 659 plots in six watersheds over 2 yr. Two forest conditions (conserved and human disturbed, with three watersheds as replicates) were evaluated in the dry and rainy season. Within each watershed, plots were randomly located at three different distance categories from either stream edge: 0–10 m (near‐stream environment), 30–40 m (mid‐slope environment), and 50–60 m (upslope environment). Herpetofauna was surveyed by time‐constrained searches with a sampling effort of 1980 person‐hours. Eighteen anuran, 18 lizard and 23 snake species were recorded. Overall, abundance and diversity of lizards and snakes decreased from near‐stream to upslope areas in both forest conditions and seasons; while that of anurans followed this trend only for the conserved forest during the rainy season. Regardless of distance, abundance and diversity of anurans markedly decreased during the dry season, while that of snakes and lizards increased. Overall, our study shows that the importance of riparian areas for herpetofaunal conservation in dry tropical forests varies with forest condition and season.  相似文献   
37.
Aim To investigate the potential impacts of climate change on stream fish assemblages in terms of species and biological trait diversity, composition and similarity. Location One‐thousand one‐hundred and ten stream sections in France. Methods We predicted the future potential distribution of 35 common stream fish species facing changes in temperature and precipitation regime. Seven different species distribution models were applied and a consensus forecast was produced to limit uncertainty between single‐models. The potential impacts of climate change on fish assemblages were assessed using both species and biological trait approaches. We then addressed the spatial distribution of potential impacts along the upstream–downstream gradient. Results Overall, climate change was predicted to result in an increase in species and trait diversity. Species and trait composition of the fish assemblages were also projected to be highly modified. Changes in assemblages’ diversity and composition differed strongly along the upstream–downstream gradient, with upstream and midstream assemblages more modified than downstream assemblages. We also predicted a global increase in species and trait similarity between pairwise assemblages indicating a future species and trait homogenization of fish assemblages. Nevertheless, we found that upstream assemblages would differentiate, whereas midstream and downstream assemblages would homogenize. Our results suggested that colonization could be the main driver of the predicted homogenization, while local extinctions could result in assemblage differentiation. Main conclusions This study demonstrated that climate change could lead to contrasted impacts on fish assemblage structure and diversity depending on the position along the upstream–downstream gradient. These results could have important implications in terms of ecosystem monitoring as they could be useful in establishing areas that would need conservation prioritization.  相似文献   
38.
Some expected changes in climate resulting from human greenhouse gas emissions are clear and well documented, but others may be harder to predict because they involve extreme weather events or heretofore unusual combinations of weather patterns. One recent example of unusual weather that may become more frequent with climate change occurred in early spring 2007 when a large Arctic air mass moved into the eastern United States following a very warm late winter. In this paper, we document effects of this freeze event on Walker Branch, a well‐studied stream ecosystem in eastern Tennessee. The 2007 spring freeze killed newly grown leaf tissues in the forest canopy, dramatically increasing the amount of light reaching the stream. Light levels at the stream surface were sustained at levels considerably above those normal for the late spring and summer months due to the incomplete recovery of canopy leaf area. Increased light levels caused a cascade of ecological effects in the stream beginning with considerably higher (two–three times) rates of gross primary production (GPP) during the late spring and summer months when normally low light levels severely limit stream GPP. Higher rates of stream GPP in turn resulted in higher rates of nitrate (NO3?) uptake by the autotrophic community and lower NO3? concentrations in stream water. Higher rates of stream GPP in summer also resulted in higher growth rates of a dominant herbivore, the snail Elimia clavaeformis. Typically, during summer months net NO3? uptake and snail growth rates are zero to negative; however, in 2007 uptake and growth were maintained at moderate levels. These results show how changes in forest vegetation phenology can have dramatic effects on stream productivity at multiple trophic levels and on nutrient cycling as a result of tight coupling of forest and stream ecosystems. Thus, climate change‐induced changes in canopy structure and phenology may lead to large effects on stream ecosystems in the future.  相似文献   
39.
在北方寒冷区,凋落物于秋季大量输入溪流,是水生生物越冬生存的关键。河床凋落物的堆积和组成会直接影响凋落叶分解等关键生态过程,但目前国内关于北方地区溪流河床凋落物分布特征的研究匮乏。在长白山地区一条源头溪流,采用原位取样的方法,探究了溪流河床凋落物的分布特征及季节动态。结果表明:深潭型凋落物斑块的堆积面积和水深显著大于浅滩型凋落物斑块和倒木型凋落物斑块,流速则显著低于其他两种凋落物斑块;倒木型凋落物斑块的堆积厚度显著大于其他两种凋落物斑块。浅滩型凋落物斑块和倒木型凋落物斑块的组成以叶片为主,碎叶片次之,树枝树干最少;深潭型凋落物斑块的组成以碎叶片和树枝树干为主,叶片较少,但秋季和冬季冻结初期除外。冬季雪融期凋落物斑块的堆积厚度显著大于其他时期;春季凋落物斑块的堆积面积显著小于其他时期,水深显著大于其他时期。随着季节变化,浅滩型凋落物斑块中的叶片比例逐渐减少,碎叶片比例逐渐增加;深潭型凋落物斑块中的树枝树干比例逐渐增加。水深与浅滩型凋落物斑块中碎叶片的干重呈显著负相关。溪流内凋落物的分布具有时空差异性,可为寒冷区溪流生态过程后续的研究提供基础数据。  相似文献   
40.
The photochemical behavior of intact stream periphyton communities in France was evaluated in response to the time course of natural light. Intact biofilms grown on glass substrata were collected at three development stages in July and November, and structural parameters of the biofilms were investigated (diatom density and taxonomy). At each season, physiological parameters based on pigment analysis (HPLC) and pulse‐amplitude‐modulated (PAM) chl fluorescence technique were estimated periodically during a day from dawn to zenith. Regardless of the community studied, the optimal quantum yield of PSII (Fv/Fm), the effective PSII efficiency (ΦPSII), the nonphotochemical quenching (NPQ), and the relative electron transport rate (rETR) exhibited clear dynamic patterns over the morning. Moreover, microalgae responded to the light increase by developing the photoprotective xanthophyll cycle. The analysis of PI parameters and pigment profiles suggests that July communities were adapted to higher light environments in comparison with November ones, which could be partly explained by a shift in the taxonomic composition. Finally, differences between development stages were significant only in July. In particular, photoinhibition was less pronounced in mature assemblages, indicating that self‐shading (in relation to algal biomass) could have influenced photosynthesis in older communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号