首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  国内免费   24篇
  2023年   5篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   2篇
  2004年   8篇
  2003年   7篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
31.
Rural India derives its energy needs for cooking and heating through the use of fuel wood and for lighting and agricultural operations through kerosene and diesel. Use of fuel wood has aggravated the problem of de-forestation, while availability of kerosene and diesel cannot be guaranteed due to corrupt practices in the public distribution systems. In contrast, urban India derives its energy needs through LPG cylinders, petrol, and electricity. However, their cost and uncertainty rendered them beyond the reach of lower income population. This scenario is more or less true with many developing countries. To meet these objectives, biogas generation from biodegradable waste using anaerobic digestion (AD) appears to be a sustainable avenue as it could be used for (a) water and space heating of farmhouses, animal shelters, (b) generating steam for food processing plants, and (c) electricity generation, in addition to reducing the pollution/hazard potential of these wastes. Many of the underdeveloped and developing countries are in the temperate zone and thus mesophilic AD could provide a desired pathway to achieve a long delayed need of energy for comfortable living, farming, and industrial operations. Efforts made in this direction are reviewed in the present article.  相似文献   
32.
李洋  唐书恒  陈健  陈萍 《微生物学报》2022,62(6):2328-2339
在“双碳”目标引领下,传统化石能源将逐渐被取代。我国煤炭资源储量多、分布广,将不可开采的煤炭资源生物气化可作为天然气资源的重要补充。因此,研究生物成因煤层气的增产机理具有重要的理论和现实意义。煤生物气化的发展前景广阔,但难点在其缓慢的动力学特征。为揭示生物煤层气的生成潜力和内部因素,本文就煤的物理化学特征对生物气化的影响、煤的物化性质对生物作用的响应以及预处理煤提高其生物有效利用性进行系统论述。生物作用降解煤的内部因素和环境条件已通过室内研究查明,发现低阶煤比高阶煤更具生物气增产潜力。产甲烷微生物群落对煤的生物转化过程势必引起煤的各项物理化学性质的变化。为产甲烷菌持续提供可用底物是煤生物气化的主要限制因素,研究多以化学预处理手段提高煤生物气化的效率和产量,而超临界CO2萃取以物理方式溶解大分子网格中小分子有机物用于生物气化。生物成因煤层气的增产潜力巨大,但室内实验条件与储层环境差异明显,原位增产有待深入研究,煤层有机物生物转化的微生物学研究亦有待完善。不同煤阶、不同储层环境对生物气化影响的主控因素研究是实现煤的生物气化商业化开发的关键。  相似文献   
33.
Dicarboxylic acid solid waste containing phthalic acid, malic acid, quinone, saturated and unsaturated dicarboxylic esters etc., are discharged in huge quantities during the crackdown of benzene over the catalyst vanadium at temperatures greater than 500 °C in a dicarboxylic acid manufacturing industry. Concern over the biological effects of these compounds underlines the necessity to treat this solid waste. The role of yeast Saccharomyces cerevisiae and anaerobic mixed bacterial cultures immobilized in activated carbon, in sequential two stage anoxic reactors, were investigated for the degradation of dicarboxylic acid solid waste (DASW). In the first stage, DASW was dissolved in water to yield a concentration of 0.5% w/v and was treated in yeast Saccharomyces cerevisiae immobilized reactor at an optimum residence time of 24 h. The yeast fermented samples were further treated in an upflow anaerobic reactor containing mixed culture immobilized in activated carbon at an Hydraulic Retention Time (HRT) of 0.2076 days at an hydraulic flow rate of 14.6×10−3 m3/day and Chemical Oxygen Demand (COD) loading rate of 4.3 kg/m3/day. The intermediates that were formed during the yeast fermentation and the anaerobic degradation of DASW were characterized by HPLC, proton NMR, C13 NMR and mass spectrometry.  相似文献   
34.
AIMS: Evaluation of the composition, distribution and activities of syntrophic bacteria and methanogens in soils from eutrophic and low nutrient regions of a freshwater marsh, and to compare these results with those obtained from a similar study in the Florida Everglades. METHODS AND RESULTS: Culture dependent and independent approaches were employed to study consortia of syntrophs and methanogens in a freshwater marsh. Methanogenesis from butyrate oxidation was fourfold higher in microcosms containing soil from eutrophic regions of the marsh than from low nutrient regions. Propionate was oxidized in eutrophic microcosms at lower rates than butyrate and with lower yields of methane. Sequence analysis of 16S rRNA gene clone libraries from DNA extracted from microcosms and soils revealed differences such that the dominant restriction fragment length polymorphism (RFLP) phylotypes (representing 82-88% of clone libraries) from eutrophic soils clustered with fatty acid oxidizing Syntrophomonas spp. The four dominant RFLP phylotypes (representing 11-24%) from microcosms containing soils from low nutrient regions were sequenced, and clustered with micro-organisms having the potential for fermentative and syntrophic metabolism. Archaeal 16S rRNA sequence analysis showed that methanogens from eutrophic regions were from diverse families, including Methanomicrobiaceae, Methanosarcinaceae, and Methanocorpusculaceae, but clone libraries from low nutrient soils revealed only members of Methanosarcinaceae. CONCLUSIONS: These findings indicate that syntroph-methanogen consortia differed with nutrient levels in a freshwater marsh. SIGNIFICANCE AND IMPACT OF THE STUDY: This is one of few studies addressing the distribution of fatty acid consuming-hydrogen producing bacteria (syntrophs) and their methanogenic partners in wetland soils, and the effects of eutrophication on the ecology these groups.  相似文献   
35.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   
36.
The presence of sulfate in anaerobic reactors can trigger competitive and syntrophic interactions between various groups of microorganisms, such as sulfate reducers, methanogens and acetogens. In order to steer the reactor process in the direction of sulfidogenesis or methanogenesis, it is essential to get insight into the population dynamics of these groups of microorganisms upon changes in the reactor operating conditions. Several methods exist to characterize and quantify the microbial sludge composition. Combining classical microbiological and modern molecular-based sludge characterization methods has proven to be a powerful approach to study the microbial composition of the anaerobic sludge.  相似文献   
37.
The identities and taxonomic diversity of the endosymbiotic methanogens from the anaerobic protozoaMetopus contortus, Metopus striatus, Metopus palaeformis, Trimyema sp. andPelomyxa palustris were determined by comparative analysis of their 16S ribosomal RNA sequences. Fluorescent oligonucleotide probes were designed to bind to the symbiont rRNA sequences and to provide direct visual evidence of their origins from methanogenic archaea contained within the host cells. Confocal microscopy was used to analyze the morphology of the endosymbionts in whole cells ofMetopus palaeformis, Metopus contortus, Trimyema sp. andCyclidium porcatum. The endosymbionts are taxonomically diverse and are drawn from three different genera;Methanobacterium, Methanocorpusculum andMethanoplanus. In every case the symbionts are closely related to, but different from, free-living methanogens for which sequences are available. It is thus apparent that symbioses have been formed repeatedly and independently. Ciliates which are unrelated to each other (Trimyema sp. andMetopus contortus) may contain symbionts which are closely related, and congeneric ciliates (Metopus palaeformis andM. contortus) may contain symbionts which are distantly related to each other. This suggests that some of the symbiotic associations must be relatively recent. For example, at least one of the symbioses inMetopus must postdate the speciation ofM. palaeformis andM. contortus. Despite this,Metopus contortus, Trimyema sp., Cyclidium porcatum and their respective endosymbionts show sophisticated morphological interactions which probably facilitate the exchange of materials between the partners.  相似文献   
38.
【背景】开发生物甲烷资源是减轻化石燃料供求紧张的有效措施,而秸秆类原料的预处理及甲烷生产方法需要不断创新,从而进一步满足可持续发展。厌氧真菌与甲烷菌共培养能够通过假根侵入及纤维降解酶双重预处理秸秆并生产甲烷,但目前全世界被报道的骆驼胃肠道来源的厌氧真菌分离培养物仅有1株。【目的】从新疆准噶尔双峰驼瘤胃内容物中分离出新型厌氧真菌和甲烷菌共培养物,研究其在降解秸秆并联合生产生物甲烷方面的应用潜力。【方法】采用Hungate滚管纯化技术将从骆驼胃肠道中分离的厌氧真菌和甲烷菌共培养,对其进行形态学及分子学鉴定,随后厌氧发酵5种底物(稻秸、芦苇、构树叶、苜蓿秆和草木樨),研究产甲烷量、降解效果及主要代谢产物等方面的特性。【结果】筛选到的共培养物中的厌氧真菌为Oontomyces sp. CR1,甲烷菌为Methanobrevibacter sp. CR1。其在降解稻秸时表现出最高的木聚糖酶酶活力(21.64 IU/mL)及甲烷产量(143.39 mL/g-DM),甲烷生产特性较分离自其他动物宿主的厌氧真菌共培养物更优。【结论】共培养厌氧真菌与甲烷菌菌株CR1是一种新型高效降解菌株资源,其在利用木质纤维素生物质生产生物甲烷方面具有良好的应用前景。  相似文献   
39.
Hydrogen (H2) concentrations that were associated with microbiological respiratory processes (RPs) such as sulfate reduction and methanogenesis were quantified in continuous-flow systems (CFSs) (e.g., bioreactors, sediments). Gibbs free energy yield (ΔǴ ~ 0) of the relevant RP has been proposed to control the observed H2 concentrations, but most of the reported values do not align with the proposed energetic trends. Alternatively, we postulate that system characteristics of each experimental design influence all system components including H2 concentrations. To analyze this proposal, a Monod-based mathematical model was developed and used to design a gas–liquid bioreactor for hydrogenotrophic methanogenesis with Methanobacterium bryantii M.o.H. Gas-to-liquid H2 mass transfer, microbiological H2 consumption, biomass growth, methane formation, and Gibbs free energy yields were evaluated systematically. Combining model predictions and experimental results revealed that an initially large biomass concentration created transients during which biomass consumed [H2]L rapidly to the thermodynamic H2-threshold (≤1 nM) that triggerred the microorganisms to stop H2 oxidation. With no H2 oxidation, continuous gas-to-liquid H2 transfer increased [H2]L to a level that signaled the methanogens to resume H2 oxidation. Thus, an oscillatory H2-concentration profile developed between the thermodynamic H2-threshold (≤1 nM) and a low [H2]L (~10 nM) that relied on the rate of gas-to-liquid H2-transfer. The transient [H2]L values were too low to support biomass synthesis that could balance biomass losses through endogenous oxidation and advection; thus, biomass declined continuously and disappeared. A stable [H2]L (1807 nM) emerged as a result of abiotic H2-balance between gas-to-liquid H2 transfer and H2 removal via advection of liquid-phase.  相似文献   
40.
嗜冷产甲烷菌及其在废水厌氧处理中的应用   总被引:6,自引:0,他引:6  
左剑恶  邢薇 《应用生态学报》2007,18(9):2127-2132
嗜冷产甲烷菌对于自然界的碳素循环具有非常重要的意义,近年来引起了国内外学者的广泛关注.利用嗜冷产甲烷菌实现低温厌氧生物处理过程,可从本质上突破低温厌氧工艺的技术瓶颈,进而大大拓展厌氧生物处理技术的应用范围并降低废水处理的成本.本文针对研究者广泛关注的热点问题,从分离培养及生理生化特性、适冷机制和分子生物学研究几个方面,对嗜冷产甲烷菌的研究进展进行了全面的综述,并对其在低温厌氧生物处理技术中的应用前景进行了分析和展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号