首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   83篇
  2023年   4篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   9篇
  2016年   20篇
  2015年   33篇
  2014年   40篇
  2013年   47篇
  2012年   59篇
  2011年   54篇
  2010年   31篇
  2009年   31篇
  2008年   49篇
  2007年   63篇
  2006年   47篇
  2005年   72篇
  2004年   65篇
  2003年   74篇
  2002年   58篇
  2001年   56篇
  2000年   71篇
  1999年   43篇
  1998年   17篇
  1997年   11篇
  1996年   8篇
  1995年   15篇
  1994年   11篇
  1993年   10篇
  1992年   19篇
  1991年   34篇
  1990年   17篇
  1989年   18篇
  1988年   19篇
  1987年   21篇
  1986年   9篇
  1985年   17篇
  1984年   4篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1979年   5篇
  1974年   3篇
  1973年   3篇
  1972年   5篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有1251条查询结果,搜索用时 250 毫秒
31.
Recent studies suggest that the temporal gradient of shear stress that is generated by blood flow plays an important role in the pathology of arteriosclerosis. We focused on the temporal gradient of shear stress and measured the permeability of albumin under steady or pulsatile shear stress conditions. Porcine aortic endothelial cells were seeded on a membrane filter and subjected to steady or pulsatile shear stress (1 Hz) at 1 Pa for 48 h, and the permeability of albumin was measured over time. The permeability increased gradually under steady flow but increased acutely under pulsatile shear stress. In particular, the maximum permeability of albumin differed under these conditions. The value was 4.2 × 10?5 cm/s at 18 h under pulsatile shear stress and 2.8 × 10?5 cm/s at 48 h under steady shear stress. The permeable route of albumin was examined using isoproterenol, which decreases junctional permeability. The increase in albumin permeability with pulsatile shear stress was decreased by isoproterenol. These results suggest that the increased permeability of albumin with pulsatile shear stress was related to trafficking through paracellular junctions. Thus, pulsation may promote a mechanotransduction process that differs from that of steady shear stress, and these pulsation effects likely play an important role in the permeability of macromolecules.  相似文献   
32.
33.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   
34.

Background

CHK1 is an important effector kinase that regulates the cell cycle checkpoint. Previously, we showed that CHK1 is cleaved in a caspase (CASP)-dependent manner during DNA damage-induced programmed cell death (PCD) and have examined its physiological roles.

Methods and results

In this study, we investigated the behavior of CHK1 in PCD. Firstly, we found that CHK1 is cleaved at three sites in PCD, and all cleavages were inhibited by the co-treatment of a pan-CASP inhibitor or serine protease inhibitors. We also showed that CHK1 is cleaved by CASP3 and/or CASP7 recognizing at 296SNLD299 and 348TCPD351, and that the cleavage results in the enhancement of CHK1 kinase activity. Furthermore, as a result of the characterization of cleavage sites by site-directed mutagenesis and an analysis performed using deletion mutants, we identified 320EPRT323 as an additional cleavage recognition sequence. Considering the consensus sequence cleaved by CASP, it is likely that CHK1 is cleaved by non-CASP family protease(s) recognizing at 320EPRT323. Additionally, the cleavage catalyzed by the 320EPRT323 protease(s) markedly and specifically increased when U2OS cells synchronized into G1 phase were induced to PCD by cisplatin treatment.

Conclusion

CHK1 cleavage is directly and indirectly regulated by CASP and non-CASP family proteases including serine protease(s) and the “320EPRT323 protease(s).” Furthermore, 320EPRT323 cleavage of CHK1 occurs efficiently in PCD which is induced at the G1 phase by DNA damage.

General significance

CASP and non-CASP family proteases intricately regulate cleavage for up-regulation of CHK1 kinase activity during PCD.  相似文献   
35.
The motility of bacteria is an important factor in their infectivity. In this study, the motility of Leptospira, a member of the spirochete family that causes a zoonotic disease known as leptospirosis, was analyzed in different viscous or osmotic conditions. Motility assays revealed that both pathogenic and saprophytic strains increase their swimming speeds with increasing viscosity. However, only pathogenic Leptospira interrogans maintained vigorous motility near physiological osmotic conditions. This suggests that active motility in physiological conditions is advantageous when Leptospira enters hosts and when it migrates toward target tissues.  相似文献   
36.
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.  相似文献   
37.
The anti-HIV-1 activity of GUT-70, a natural product derived from the stem bark of Chlophyllum brasiliense, was evaluated. GUT-70 inhibited HIV-1 replication in both acutely and chronically infected cells through suppression of NF-κB. Our results strengthen the idea that NF-κB pathway is one of the potential targets to control HIV-1 replication and that GUT-70 could serve as a lead compound to develop novel therapeutic agents against HIV-1 infection.  相似文献   
38.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   
39.
(2R*,4S*,6S*,αS*)- and (2R,4R,6RS)-Streptovitacin-C2 (STV-C2) (1a and 1b) were synthesized by an aldol condensation of (2R*,4S*)- or (2R,4R)-2,4-dimethyl-2-trimethylsiloxy-1-cyclohexanone (15a or 15b) with 4-(2-oxoethyl)-2,6-piperidinedione (16), which was followed by desilylation of the products. The stereochemistry of the synthesized STV-C2 isomers (1a and 1b) was elucidated by NMR. STV-C2 isomers (1a and 1b) did not show strong antimicrobial activity against Saccharomyces cerevisiae and Pyricularia oryzae.  相似文献   
40.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号