首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Such (+)- and (?)-cis-cycloheximide isomers as isocyclohcximide (1a, 1b), α-epiisocycloheximide (2a, 2b) and neocycloheximide (3a, 3b) were synthesized by aldol condensation of (?)-(2R, 4R)- and (+)-(2S, 4S)-cis-2,4-dimethyl-1-cyclohexanone (5a, 5b). obtained by microbial resolution, with 4-(2-oxoethyl)-2,6-piperidinedione (7). The absolute configuration of the (?)-cis-ketone 5a was confirmed by chemical correlation with natural (2S, 4S, 6S, αR)-cycloheximide (4). The newly synthesized isomer, (?)-α-epiisocycloheximide (2b), showed strong antimicrobial activity against S. cerevisiae andP. oryzae close to that of natural cycloheximide (4).  相似文献   

2.
Abstract

To clarify the structures of biotransformation products and metabolic pathways, the biotransformation of monoterpenoids, (+)- and (?)-camphorquinone (1a and b), has been investigated using Aspergillus wentii as a biocatalyst. Compound 1a was converted to (?)-(2S)-exo-hydroxycamphor (2a), (?)-(2S)-endo-hydroxycamphor (3a), (?)-(3S)-exo-hydroxycamphor (4a), (?)-(3S)-endo-hydroxycamphor (5a), and (+)-camphoric acid (6a). Compound 1b was converted to (+)-(2R)-exo-hydroxycamphor (2b), (+)-(2R)-endo-hydroxycamphor (3b), (+)-(3R)-exo-hydroxycamphor (4b), (+)-(3R)-endo-hydroxycamphor (5b), and (?)-camphoric acid (6b). Compound 1a mainly produced 2a (65.0%) with stereoselectivity, whereas 1b afforded 3b (84.3%) with high stereoselectivity. These structures were confirmed by gas chromatography–mass spectrometry, infrared, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. The products illustrate the marked ability of A. wentii for enzymatic oxidation and ketone reduction.  相似文献   

3.
Synthetic studies of annonaceous acetogenins starting from (?)-muricatacin (1a) or (+)-muricatacin are described, involving (?)-muricatacin (1a), mono-THF acetogenin, solamin (2), reticulatacin (3), (15R, 16R, 19S, 20S)-cis-solamin (4a) and (15S, 16S, 19R, 20R)-cis-solamin (4b), non-adjacent bis-THF acetogenin, 4-deoxygigantecin (5), and epoxide-bearing acetogenin, (15S, 16R, 19S, 20R)-diepomuricanin (6a).  相似文献   

4.
(±)-(2Z,4E)-α-Ionylideneacetic acid (2) was enantioselectively oxidized to (?)-(l′S)-(2Z,4E)-4′-hydroxy-α-ionylideneacetic acid (3), (+)-(1′R)-(2Z,4E)-4′-oxo-α-ionylideneacetic acid (4) and (+)-abscisic acid (ABA) (1) by Cercospora cruenta IFO 6164, which can produce (+)-ABA and (+)-4′-oxo-α-acid 4. This metabolism was confirmed by the incorporation of radioactivity from (±)-(2-14C)-(2Z,4E)-α-acid 2 into three metabolites. (?)-4′-Hydroxy-α-acid 3 was a diastereoisomeric mixture consisting of major 1′,4′-trance-4′-hydroxy-α-acid 3a and minor 1′,4′-cis-4′-hydroxy-α-acid 3b. These structures, 3a and 3b, were confirmed by 13C-NMR and 1H-NMR analysis. Also, the enantioselectivity of the microbial oxidation was reexamined by using optically pure α-acid (+)-2 and (?)-2, as the substrates.  相似文献   

5.
The enantiomers of cis-verbenol (4a and 4a′) were first synthesized in optically pure state. (1S, 4S, 5S)-2-Pinen-4-ol (4a′) was dextrorotatory in acetone or in methanol but it was levorotatory in chloroform; cis-verbenols are indistinguishable by a prefix (+) or (?). The designation of the Ips pheromone as (+)-cis-verbenol is therefore ambiguous and it should be called as (1S, 4S, 5S)-2-pinen-4-ol (4a′) or (S)-cis-verbenol.  相似文献   

6.
ABSTRACT

All eight stereoisomers of conidendrin were synthesized from (1 R,2 S,3 S)-1-(4-benzyloxy-3-methoxyphenyl)-3-(4-benzyloxy-3-methoxybenzyl)-2- hydroxymethyl-1,4-butanediol ((+)-4) and its enantiomer with high optical purity. The configurations at 4-positions of the conidendrin stereoisomers were constructed by intramolecular Friedel-Crafts reaction of protected 4. After conversion to tetrahydronaphthalene intermediate 7a, the 2- and 3-position of tetrahydronaphthalene structure 7a were converted to 3a- and 9a-position of (+)-α-conidendrin (3a), respectively. By the epimerization process of 2- or 3-position of 7a, the other diastereomers were obtained. All enantiomers were also synthesized from (?)-4.  相似文献   

7.
Eighty-one constituents were newly identified from the oil of Mentha piperita L., including a new keto-alcohol, (?)-mintlactone and (+)-isomintlactone. They were determined by spectral data and syntheses to be 4-hydroxy-4-methyl-2-cyclohexen-1-one (8), (6R, 7aR) (10) and (6R, 7aS)-3,6-dimethyl-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (11), respectively.  相似文献   

8.
Feeding experiments in cupric chloride-treated Pisum sativum pods and seedlings have demonstrated the preferential incorporation of (+)-(6aS,11aS)-[3H]maackiain over (?)-(6aR, 11aR)-[14C]maackiain into (+)-(6aR, 11aR)-pisatin, establishing that the 6a-hydroxylation of pterocarpans proceeds with retention of configuration. (+)- (6aR,11aR)-6a-hydroxymaackiain was similarly incorporated much better than (?)-(6aS,11aS)-6a- hydroxymaackiain. Where (?)-isomers were incorporated, optical activity measurements on the pisatin produced indicated significant synthesis of (?)-pisatin as well as the normal (+)-pisatin. 7,2′-Dihydroxy-4′,5′- methylenedioxyisoflav-3-ene and both enantiomers of 7,2′-dihydroxy-4′,5′-methylenedioxyisoflavan were poor precursors of pisatin.  相似文献   

9.
Enantiospecific microbial reduction of bicyclic ketones was described. Racemic Wieland–Miescher (1) and Hajos–Parrish (2) ketones were used as substrates. In a 4-h biotransformation of Hajos–Parrish ketone (2) using the strain of Didymosphaeria igniaria an optically pure ketone (R)-2 was obtained, whereas the (S)-2 ketone underwent reduction to (4aS,5S)-4 alcohol with 100% of enantiomeric excess and with over 60% of diastereoisomeric excess. Jones oxidation of the alcohol obtained in the biotransformation gave an optically pure ketone (S)-2. Enzymatic system of Coryneum betulinum reduced the (R)-2 ketone to (4aR,5S)-4 alcohol with a high enantiomerical purity in a 6-day reaction. Wieland-Miescher (1) ketone was transformed by these microorganisms in an analogous way, but the reaction times were longer.  相似文献   

10.
A germination stimulant, fabacyl acetate, was purified from root exudates of pea (Pisum sativum L.) and its structure was determined as ent-2′-epi-4a,8a-epoxyorobanchyl acetate [(3aR,4R,4aR,8bS,E)-4a,8a-epoxy-8,8-dimethyl-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-2-oxo-3,3a,4,5,6,7,8,8b-decahydro-2H-indeno[1,2-b]furan-4-yl acetate], by 1D and 2D NMR spectroscopic, ESI- and EI-MS spectrometric, X-ray crystallographic analyses, and by comparing the 1H NMR spectroscopic data and relative retention times (RRt) in LC-MS and GC-MS with those of synthetic standards prepared from (+)-orobanchol and (+)-2′-epiorobanchol. The 1H NMR spectroscopic data and RRt of fabacyl acetate were identical with those of an isomer prepared from (+)-2′-epiorobanchol except for the opposite sign in CD spectra. This is the first natural ent-strigolactone containing an epoxide group. Fabacyl acetate was previously detected in root exudates of other Fabaceae plants including faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.).  相似文献   

11.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

12.
The synthesis of methyl (?)-shikimate [(?)-2] was achieved via lipase-catalyzed optical resolution of (1S*,4R*,5R*)-4-hydroxy-6-oxabicyclo[3.2.1]oct-2-en-7-one (3). Transesterification of (±)-3 and vinyl acetate with lipase MY and subsequent hydrolysis gave optically pure (?)-3. This compound was converted to (?)-2 in two steps.  相似文献   

13.
Debutenoyl-aspertetronin A was synthesized from γ-valerolactone-γ-carboxylic acid (4) via 2, 5-dihydro-3-hydroxy-2-methyl-5-oxo-2-furanpropanoic acid. Starting from (?)-(S)-4, (+)-(S)-5-hexyl-4-hydroxy-5-methyl-2(5H)furanone (19) was synthesized, and by comparison of its optical rotation with that of an authentic sample it was proved that aspertetronin A had (R) configuration, and gregatin A had (S) configuration at their respective chiral carbon.  相似文献   

14.
Summary A chiral compound [4R-[4,6ß(E)]]-6-[4,4-bis(4-fluorophenyl)-3-(1-methyl-1H-tetrazol-5-yl)-1,3-butadienyl]-tetrahydro-4-hydroxy-2H-pyran-2-one (R-(+)-1) was prepared by the lipase-catalysed stereoselective acetylation of racemic 1 in an organic solvent. Chiral R-(+)-1 is a hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase inhibitor and a potential anticholesterol drug candidate. Among various lipases evaluated, lipase PS-30 from Pseudomonas species efficiently catalysed acetylation of the undesired enantiomer of racemic 1 to yield the S-(–)-acetylated product 2 and unreacted desired R-(+)-1. A reaction yield of 48 mol% and an optical purity of 98% were obtained for R-(+)-1 when the reaction was conducted in toluence as solvent in the presence of isopropenyl acetate as acyl donor. Lipase PS-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (five cycles) in the acetylation reaction without loss of enzyme activity, productivity, or optical purity of the R-(+)-1. The enzymatic acetylation process was scaled-up to 501 and a 640-l volume (preparative batches) at a substrate concentration of 4 g/l. R-(+)–1 was recovered from the preparative batches in 68–71% recovery yield with 98.5% gas chromatography homogeneity index and 98.5% optical purity. The S-(–) acetate 2 produced by the acetylation reaction was enzymatically hydrolysed by lipase PS-30 in a biphasic system to prepare the corresponding S-(–)-1.Correspondence to: R. N. Patel  相似文献   

15.
A new flavoalkaloid racemate, leucoflavonine (1), together with its flavonoid precursor pectolinarigenin (2), was isolated from the leaves of Leucosceptrum canum collected from Tibet. Its structure was established by comprehensive spectroscopic analysis. Chrial separation of the enantiomers of 1 was achieved, and their absolute configurations were determined as S-(+)- and R-(?)-leucoflavonines ((+)-1a and (?)-1b) by comparison of their computational and experimental optical rotations. Biological assays indicated that both (+)-1a and (?)-1b exhibited inhibitory activity against acetylchlorinesterase (AChE) in vitro (IC50?=?68.0?±?8.6 and 18.3?±?1.8?μM, respectively). Moreover, (?)-1b displayed cytotoxicity against human hepatoma cells HepG2 (IC50?=?52.9?±?3.6?μM), and inhibited the production of interleukelin-2 (IL-2) in Jurkat cells (IC50?=?16.5?±?0.9?μM), while (+)-1a showed no obvious activity in these assays.  相似文献   

16.
Baeyer-Villiger oxidation of bicyclic ketones1a,1b and4 using whole cell suspensions of the fungusCylindrocarpon destructans was found to proceed quantitatively and in case of substrate (±)-1b a moderate enantioselectivity was observed leading to (1S,6R)-1b and (1R,6S)-2b with 28% and 27% e.e., respectively.  相似文献   

17.
(22R,23R,24S)-22,23-Isopropylidenedioxy-5α-ergost-2-en-6-one 2b is an important intermediate of brassinolide. We found that the enone 2b can be prepared by transformation of (22R,23R,24S)-3α,5-cyclo-22,23-isopropylidenedioxy-5α-ergostan-6-one 5b with catalytic amount of both p-TsOH and NaBr in DMF under reflux. 5b was prepared from (22R,23R,24S)-3α,5-cyclo-22,23-dihydroxy-6β-methoxy-5α-ergostane 9b or a 6β-benzyloxy compound 9c, which was obtained in a manner similar to Mori’s brassinolide synthesis. The enone 2b was eventually prepared via a benzyl ether 9c from stigmasterol 3a in a 15.5% yield in 11 steps.  相似文献   

18.
Optically active tiraras-cycloheximide isomers such as cycloheximide [(2S,4S,6RR)-form (1)], naramycin B[(25,4S,6RαR)-form(4)], and new stereoisomers (2S,4S,6SS)-form (8) and (2S,4S,6RS)-from (9) were synthesized by an aldol condensation of trans-2,4-dimethyl-l-cyclohexanone (5b), with 4-(2-oxoethyl)-2,6-piperidinedione(6). The antimicrobial activity of trans- cycloheximide isomers (1, 4, 8, and 9) was examined against S. cerevisiae and P. oryzae. The stereoisomers 1 and 4 exhibited marked antimicrobial activity against both microorganisms as compared with their C- α-epimers 8 and 9.  相似文献   

19.
Natural ( + )-(1R,2S,3S)-methyl cucurbate (1b) and the ( – )-δ-lactone of 3-epi-cucurbic acid (16) were synthesized from (+)-(1R,6S,7R)-bicyclo [4.3.0] non-3-en-7-ol (5). Asymmetric hydrolysis of the acetate (8) of ( ± )-5 with pancreatin gave optically pure the ( + )-(7R)-alcohol (5) and (–)-(7S)-acetate (8). An ozonolysis product of ( + )-5 was transformed to ( – )-16 and ( + )-(3S)-1b with inversion of the (7R)-hydroxyl group. Similarly, unnatural (–)-1b and (+)-16 were prepared from optically pure ( — )-5. The growth inhibitory activities of these synthesized chiral compounds toward lettuce seedlings were examined.  相似文献   

20.
Abstract

5′-O-[N-(Aminoacyl)sulfamoyl]-uridines and -thymidines 4a-12a and 4b-12b have been synthesized and tested against Herpes Simplex virus type 2 (HSV-2) and as cytostatics. Condensation of 2′,3′-O-isopropylidene-5′-O-sulfamoyluridine and 3′-O-acetyl-5′-O-sulfamoylthymidine with the N-hydroxysuccinimide esters of Boc-L-Ser(Bzl), (2R, 3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbuta-noic acid [(2R, 3S-N-Z-AHPBA], (2R, 3S) and (2S, 3R)-N-Boc-AHPBA gave 4a,b-7a,b, which after removal of the protecting groups provided 1Oa,b-12a,b. A study of the selective removal of the O-Bzl protecting group from the L-Ser derivatives 4a,b, without hydrogenation of the pyrimidine ring, has been carried out. Only the fully protected uridine derivatives 4a-7a did exhibit high anti-HSV-2 activity, and none of the synthesized compounds showed significant cytostatic activity against HeLa cells cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号