首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4071篇
  免费   239篇
  国内免费   312篇
  2023年   58篇
  2022年   74篇
  2021年   94篇
  2020年   101篇
  2019年   109篇
  2018年   109篇
  2017年   114篇
  2016年   115篇
  2015年   106篇
  2014年   157篇
  2013年   335篇
  2012年   132篇
  2011年   138篇
  2010年   106篇
  2009年   185篇
  2008年   239篇
  2007年   239篇
  2006年   177篇
  2005年   174篇
  2004年   172篇
  2003年   146篇
  2002年   118篇
  2001年   106篇
  2000年   67篇
  1999年   71篇
  1998年   80篇
  1997年   61篇
  1996年   65篇
  1995年   74篇
  1994年   61篇
  1993年   59篇
  1992年   60篇
  1991年   50篇
  1990年   40篇
  1989年   56篇
  1988年   54篇
  1987年   43篇
  1986年   39篇
  1985年   59篇
  1984年   74篇
  1983年   39篇
  1982年   53篇
  1981年   37篇
  1980年   36篇
  1979年   35篇
  1978年   28篇
  1977年   22篇
  1976年   16篇
  1974年   13篇
  1973年   11篇
排序方式: 共有4622条查询结果,搜索用时 262 毫秒
21.
Nuclear genes that appear to encode both cytosolic and plastid isozymes of phosphoglucose isomerase (PGI), an essential glycolytic enzyme, have been isolated from three diploid species of the annual wild flower genus Clarkia (Onagraceae). The genes do not contain introns and are expressed to varying degrees in Escherichia coli when cloned in either Charon 35 phage or pUC plasmid vectors. The PGI proteins synthesized in E. coli form dimers, are catalytically active, and their electrophoretic mobilities are similar to those of appropriate Clarkia PGIs. The nucleotide sequence of a gene encoding a plastid isozyme of C. unguiculata is described.  相似文献   
22.
The effect of magnesium deficiency on antioxidant defence system was studied in RBC of mice suffering from hypomagnesemia. The animals were kept for 8, 15 and 22 days on magnesium-deficient diet with consequent reduction of magnesium level in plasma by 38% at the first 8 days and by 64% after 22 days of experiment. The activities of the most important antioxidant enzymes, catalase, glutathione peroxidase, superoxide dismutase, glutathione reductase, glutahione S-transferase were assayed in hemolysates. The level of reduced glutathione in erythrocytes was measured as well. Apart from catalase, the activities of antioxidant enzymes were decreasing. The activity of superoxide dismutase decreased gradually during the experiment and on the 15th and 22nd day of experiment was significantly (P<0,05) lowered by 30 and 32% respectively. The catalase activity was increased on each point of the experiment with the peak value up to 149% on 15th day, and by 32% on 22nd day. Glutathione peroxidase activity was insignificantly reduced. The reduction of Glutatione reductase and Glutathione S-transferase activities by 24 and 21%, respectively, were observed after 8 days of the experiment with a further downward tendency. The reduced glutathione was significantly depleted after 8 days by 33% and was kept on that level in the course of the study. These findings support previous reports on the hypomagnesemia – induced alteration in endogenous enzyme antioxidant defences and glutathione redox cycle of mice.  相似文献   
23.
The oxygen activation mechanisms proposed for nonheme iron systems generally follow the heme paradigm in invoking the involvement of iron-peroxo and iron-oxo species in their catalytic cycles. However, the nonheme ligand environments allow for end-on and side-on dioxygen coordination and impart greater flexibility in the modes of dioxygen activation. The currently available evidence for nonheme iron-peroxo and iron-oxo intermediates is summarized and discussed in light of the ongoing discussion on the nature of the oxidant(s) in heme enzymes.  相似文献   
24.
Complexation of bilirubin (BR) and biliverdin (BV) with biogenic and toxic metals (Mn, Cu, Cd, Co, Fe, Ni, Zn, and Ag) has been studied by means of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD). Poly-l-lysine and β-cyclodextrin in water were chosen as matrices capable of recognizing the single stereoconformer of the pigments with defined M-helicity. Such systems allow structural changes caused by complexation of pigments with metals in aqueous solution at pH 10-11 to be followed using chiroptical methods, which are intrinsically sensitive to spatial structure. These and other spectroscopic techniques have revealed that BV and BR form monomeric complexes with Cd, Cu, and Zn and dimeric complexes with Mn. The stabilities of the complexes with Fe, Ni, Co, and Ag are remarkably lower. The sign of the ECD and VCD patterns of the complexed BV does not change for the chelates of any of the studied metals other than Zn, this exception being interpreted in terms of manifestation of the opposite helicity of BV in its chelate with Zn. In the case of BR, the observed inversion of ECD signal after complexation, together with the analysis of VCD spectra, reveals that a flattening of the molecule takes place, i.e., an increase in the angle between the pyrrinone chromophores without an inversion of helicity. This chiral stereoselectivity, which is very specific in the case of the Zn chelates, is discussed in connection with the specific inhibition of Zn-required enzymes by bile pigments.  相似文献   
25.
26.
27.
Starch, total sugars, reducing sugars and protein contents and the specific activities of hydrolytic enzymes such as amylase, Phosphorylase, soluble acid invertase, wall-bound acid invertase, sucrose synthetase, acid and alkaline phosphatases and ribonuclease were determined in root forming, shoot forming and non-organ-forming callus cultures of tobacco. Organ-forming cultures not only showed higher amounts of the above metabolites but also higher enzyme activities compared to non-organ-forming cultures. The activities of these enzymes in relation to organogenesis is discussed.  相似文献   
28.
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.  相似文献   
29.
30.
The effects of two glycosylated whey hydrolysates (GWH-Gal A and GWH-Gal B) on glutathione (GSH) and related antioxidant enzymes in SGC-7901 cells were evaluated. Two whey glycosylated hydrolysates promoted an increase in reduced glutathione (GSH) in normal SGC-7901 cells. GSH, glutathione peroxidase (GPx), γ-glutamine cysteine synthetaase (γ-GCS), and catalase (CAT) at 1.0 and 2.0 mg/mL in normal SGC-7901 cells were higher in the GWH-Gal A group than in the GWH-Gal B group (P < 0.05). Compared with GWH-Gal B, GWH-Gal A more strongly inhibited decreases in intracellular GSH, GPx, γ-GCS, CAT, and superoxide dismutase (SOD) in H2O2-induced SGC-7901 cells. Compared with GWH-Gal B, GWH-Gal A at 1.0 and 2.0 mg/mL effectively inhibited increases in lactate dehydrogenase (LDH) and malondialdehyde (MDA) in H2O2-induced SGC-7901 cells (P < 0.05). Therefore, GSH content and related antioxidant enzyme activity levels (GPx, γ-GCS, CAT, SOD) in both normal and H2O2-induced SGC-7901 cells were considerably stronger in the GWH-Gal A group than in the GWH-Gal B group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号