首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   9篇
  国内免费   3篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   13篇
  2017年   15篇
  2016年   9篇
  2015年   16篇
  2014年   24篇
  2013年   54篇
  2012年   19篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有201条查询结果,搜索用时 328 毫秒
131.
Silica dust mainly attacks alveolar macrophages (AMs) and increases the apoptosis of AMs in silicosis patients. However, it is still unclear whether autophagy is affected. Autophagy mainly has defensive functions in response to stress, contributing to cell survival in adverse conditions, and conversely it has also been implicated in cell death. Lipopolysaccharide (LPS) induces autophagy and apoptosis in macrophages. The role of LPS in autophagy and apoptosis in AMs of silicosis patients is unknown. In this study, we collected AMs from 53 male workers exposed to silica and divided them into an observer (control) group, and stage I, II and III patient groups. We found increased levels of LC3B, SQSTM1/p62 and BECN1,whereas the phosphorylation of MTOR,and levels of LAMP2, TLR4, MYD88, TICAM1, as well as the number of lysosomes decreased with the development of silicosis. LPS stimulation triggered autophagy and increased levels of SQSTM1 in AMs. The autophagy inhibitor, 3-methyladenine (3MA), inhibited LPS-induced apoptosis in the AMs of silicosis patients. Moreover, 3MA reversed the LPS-induced decrease in BCL2 and the increase in BAX and CASP3 levels in AMs. These results suggest that autophagosomes accumulate in AMs during silicosis progression. LPS can induce the formation of autophagosomes through a TLR4-dependent pathway, and LPS may exacerbate the apoptosis in AMs. Blockade of the formation of autophagosomes may inhibit LPS-induced apoptosis via the intrinsic apoptotic pathway in AMs. These findings describe novel mechanisms that may lead to new preventive and therapeutic strategies for pulmonary fibrosis.  相似文献   
132.
Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.  相似文献   
133.
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1‐mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.  相似文献   
134.
The delimiting membranes of isolated autophagosomes from rat liver had extremely few transmembrane proteins, as indicated by the paucity of intramembrane particles in freeze-fracture images (about 20 particles/microm2, whereas isolated lysosomes had about 2000 particles/microm2). The autophagosomes also appeared to lack peripheral surface membrane proteins, since attempts to surface-biotinylate intact autophagosomes only yielded biotinylation of proteins from contaminating damaged mitochondria. All the membrane layers of multilamellar autophagosomes were equally particle-poor; the same was true of the autophagosome-forming, sequestering membrane complexes (phagophores). Isolated amphisomes (vacuoles formed by fusion between autophagosomes and endosomes) had more intramembrane particles than the autophagosomes (about 90 particles/microm2), and freeze-fracture images of these organelles frequently showed particle-rich endosomes fusing with particle-poor or particle-free autophagosomes. The appearence of multiple particle clusters suggested that a single autophagic vacuole could undergo multiple fusions with endosomes. Only the outermost membrane of bi- or multilamellar autophagic vacuoles appeared to engage in such fusions.  相似文献   
135.
136.
137.
Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.  相似文献   
138.
Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3‐interacting region (LIR) at the C‐terminus of the protein and a novel motif at the N‐terminus. Although both sites are important for Atg4–Atg8 interaction in vivo, only the new N‐terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE‐bound Atg8.  相似文献   
139.
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.  相似文献   
140.
Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号