首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
  国内免费   11篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   16篇
  2010年   1篇
  2009年   7篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有126条查询结果,搜索用时 211 毫秒
121.
《Journal of Asia》2020,23(4):957-962
The symbiotic microorganisms in the gut of termites play a key role in the digestion of cellulose and nitrogen metabolism. Therefore, disruption of these symbioses activity can open a door toward termite management. Thus, the current study aimed to exploit termite gut bacterial capacity in order to utilize it for efficient termite control. So, in the current study, gut bacteria of Microcerotermes diversus have been extracted, cultivated on both liquid and solid media, and screened with a range of antibiotics to find the most effective antibiotics. Results showed that chloramphenicol and nalidixic acid were the most effective antibiotics in preventing the colony unit formation of the gut bacteria amongst 16 antibiotics tested. Also, from two chitin synthesis inhibitors tested hexaflumuron with an LC50 of 613.9 µg ml−1 was more toxic than lufenuron with an LC50 of 1414.5 µg ml−1. Thus, two antibiotics (chloramphenicol and nalidixic acid) were used simultaneously with a sub-lethal concentration of hexaflumuron against the termite and a variety of factors such as wood consumption rate, running speed, body water content, and tunneling activity were evaluated under laboratory conditions. Results showed that the combination of these two antibiotics (chloramphenicol and nalidixic acid) with hexaflumuron caused a significant decrease in termite consumption rate, running speed, and tunneling behavior, but didn’t affect the body water contents of termites. These results suggest that using a combination of antibiotic/s and hexaflumuron is a promising management practice to get a suitable control measure for the studied termite.  相似文献   
122.
123.
Termite soldiers are morphologically specialized for colony defense. Analysis of the mechanisms of soldier differentiation is important for understanding the establishment of termite societies. Soldiers differentiate from workers through a presoldier stage and have well-sclerotized and pigmented cuticles. These characteristics are important for nest defense and are likely to be caused by soldier-specific mechanisms of cuticular tanning. The molecular mechanisms leading to cuticular tanning have not been elucidated. Laccase2 (Lac2) plays important roles in this process in insects, and we hypothesized that Lac2 expression may be involved in soldier-specific cuticular tanning. We observed inner and outer head cuticle changes and compared the Lac2 expression patterns among three molts (worker–worker, worker–presoldier and presoldier–soldier) in the termite Reticulitermes speratus. Quantitative analyses of head cuticle colors showed that the color properties changed more conspicuously in presoldier–soldier molts than in the other two molts. Histological observations showed that the exocuticles of soldier heads were substantially thicker than those of worker and presoldier heads, underwent tanning before or just after ecdysis, and were pigmented at earlier time points than other molts. Finally, markedly higher Lac2 expression levels were observed just before and after ecdysis only in the presoldier–soldier molt. These results suggest that specific cuticular formation occurs in the exocuticles during soldier differentiation, and that the high level of Lac2 expression during the presoldier–soldier molt is related to soldier-specific cuticular tanning. We speculate that evolution of the regulatory mechanisms of Lac2 expression were important for the acquisition of soldier-specific cuticles.  相似文献   
124.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   
125.
126.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号