首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2340篇
  免费   65篇
  国内免费   151篇
  2023年   10篇
  2022年   15篇
  2021年   20篇
  2020年   46篇
  2019年   30篇
  2018年   24篇
  2017年   52篇
  2016年   36篇
  2015年   36篇
  2014年   69篇
  2013年   114篇
  2012年   52篇
  2011年   98篇
  2010年   68篇
  2009年   130篇
  2008年   179篇
  2007年   159篇
  2006年   118篇
  2005年   114篇
  2004年   94篇
  2003年   69篇
  2002年   61篇
  2001年   37篇
  2000年   60篇
  1999年   60篇
  1998年   49篇
  1997年   45篇
  1996年   47篇
  1995年   41篇
  1994年   30篇
  1993年   35篇
  1992年   40篇
  1991年   40篇
  1990年   47篇
  1989年   41篇
  1988年   36篇
  1987年   26篇
  1986年   22篇
  1985年   28篇
  1984年   29篇
  1983年   35篇
  1982年   46篇
  1981年   33篇
  1980年   40篇
  1979年   32篇
  1978年   18篇
  1977年   16篇
  1976年   14篇
  1974年   4篇
  1970年   3篇
排序方式: 共有2556条查询结果,搜索用时 690 毫秒
121.
Fish are ectothermic animals and have body temperatures close to that of the water they inhabit. They can still control their body temperatures by selecting habitats with temperatures that maximize their growth, feed conversion and wellbeing. Lumpfish, Cyclopterus lumpus, is widely distributed in the North Atlantic Ocean and therefore exposed to variable water temperatures. Lumpfish is extensively used as cleanerfish in salmon farming in Norway and exposed to a wide temperature range along the north-south axis of the Norwegian coastline. But, if these temperature ranges correspond to the preference temperatures of lumpfish is not known. If lumpfish has adapted to regional temperatures along the Norwegian coast, differences in preference temperature for fish from different regions should be evident. In a selective breeding perspective, different selection lines for preference temperature would then be useful for further development of lumpfish as a cleanerfish.We subjected lumpfish juveniles weighing 154–426g originated from northern (Group North – GN) and southern (Group South – GS) Norway to a temperature preference test, using an electronic shuttle box system. The system allowed the fish to control the water temperature by moving between two chambers, and thereby choosing its preferred temperature in the range from 5 to 16 °C. We started the temperature at 7.8 ± 1.37 °C for GN and 7.58 ± 1.34 °C for GS, but all the fish except four (two each from GN and GS) chose lower temperatures (5.03–7.6 °C) in the first 18 h and stayed closer to that temperature during the next 30 h. Based on the results, GN and GS lumpfish preferred 6.92 ± 1.8 and 6.2 ± 1.2, respectively, and there was no significant difference between the groups. Neither was there any significant difference in growth rates (SGR) between the two groups. Based on our results, we suggest that lumpfish from any geographical origin along the Norwegian coast can be used anywhere in Norway. It follows that lumpfish from a single selection line could be used at any salmon farm in Norway independent of its location.  相似文献   
122.
The intrinsic rate of increase (rm) has been considered as an important indicator of fitness in terrestrial ectotherms since long. It is actually an equivalent to the instantaneous growth rate of the exponential equation for describing the density-independent population growth. In terrestrial ectotherms, rm has been demonstrated to be temperature-dependent. The temperature at which rm was maximal, was considered to be the “optimal” temperature for fitness in Amarasekare and Savage (2012), but this definition needs further analysis. Only rm cannot provide thorough representation of fitness. Because body size can affect the competitive abilities in many terrestrial ectotherms, both population size and body size should be considered in measuring the fitness of ectotherms. The rule of “bigger is better” requires relatively low temperature to increase in body size, whereas relatively high temperature is required for a rapid increase in population size. Thus, there is presumably a trade-off in temperature for adjusting individual body size and population size to achieve maximum fitness. We hypothesized that this temperature could be reflected by the intrinsic optimum temperature for developmental rate in the Sharpe–Schoolfield–Ikemoto model, and it led to a temperature estimate around 20 °C. However, the traditional viewpoint based on the temperature corresponding to the maximal intrinsic rate of increase provides a temperature estimate around 30 °C. This study suggests that a low temperature around 20 °C might authentically represent the optimal ambient temperature for fitness in terrestrial ectotherms. It implies that thermal biologists who are interested in the effect of temperature on the fitness in terrestrial ectotherms should pay more attention to their performance at low temperature rather than high temperature.  相似文献   
123.
The resting metabolic rate (RMR) of seasonally-acclimated Mabuya brevicollis of various body masses was determined at 20, 25, 30, 35 and 40 °C, using open-flow respirometry. RMR (ml g−1 h−1) decreased with increasing mass at each temperature. RMRs increaProd. Type: FTPsed as temperature increased. The highest and lowest Q10 values were obtained for the temperature ranges 20–25 °C and 30–35 °C for the summer-acclimated lizards. The exponent of mass “b” in the metabolism-body mass relation ranged from 0.41 to 0.61. b values were lower in the autumn and winter-acclimated lizards than in spring and summer-acclimated lizards. Seasonal acclimation effects were evident at all temperatures (20–40 °C) for M. brevicollis. Winter-acclimated skinks had the lowest metabolic rates at different temperatures. The pattern of acclimation exhibited by M. brevicollis may represent a useful adaptation for lizards inhabiting subtropical deserts to promote activity during their active seasons.  相似文献   
124.
Whole-body cryotherapy (WBC) involves exposing minimally dressed participants to very cold air (injecting liquid nitrogen with temperature −195 °C), either in a specially designed chamber (cryo-chamber) or cabin (cryo-cabin), for a short period of time. The aim of this study was to examine the actual temperature of the air in the cryo-cabin at different locations throughout the cabin by using human subjects and a manikin. Additionally, we monitored skin temperature before and for 60 min after the cryo-cabin session. Twelve subjects completed one 3 min cryo-cabin session. Temperature next to the skin was assessed during the session, while the skin temperature was monitored before, 3 min after and every 10 min for 60 min after completing the session. There was a statistically significant interaction (time×position) for temperature among the different body parts during the WBC, and for skin temperature among different body parts after the cryo-cabin session. Statistically significant time effects during and following cryo-cabin session were present for all body parts. We showed that actual temperature in the cryo-cabin is substantially different from the one reported by the manufacturer. Thermal response after cryo-cabin session is similar to response observed after cryo-chamber cold exposure reported in previously published studies. This could be of great practical value as cryo-cabins are less expensive and easier to use compared to cryo-chambers.  相似文献   
125.
Predicted increases in temperature associated with climate change are expected to have consequences for fish, in particular for Arctic charr, Salvelinus alpinus, a cold-adapted fish species. Despite differences in predicted hydroecological responses to climate change in fluvial and lacustrine environments, little is known of whether fluvial and lacustrine Arctic charr populations may respond differently to increasing temperatures. In order to compare growth and thermal habitat use between habitat types, otolith-inferred average water temperatures estimated from whole otoliths and fork lengths at capture were measured for young-of-the-year (YOY) Arctic charr obtained from two proximal fluvial and lacustrine sites in Labrador, Canada. Otolith-inferred average experienced water temperatures were not significantly correlated with air temperatures at both sites, suggestive of behavioural thermoregulation by YOY. The majority of Kogluktokoluk Brook (fluvial) YOY were found using water temperatures consistent with laboratory determined preferred temperatures for juvenile Arctic charr, whereas most Tom's Pond (lacustrine) YOY were found using temperatures ranging between preferred temperatures and optimal temperatures for growth. There was no consistent difference between mean water temperatures used between YOY from the two sites. Otolith-inferred average experienced water temperatures were only correlated to fork lengths in Tom's Pond YOY. The lack of correlation in Kogluktokoluk Brook YOY is argued to reflect resource partitioning occurring as a result of territoriality known to occur among stream salmonids. The limited range of temperatures used by fluvial YOY in this study, particularly the lack of cooler temperatures, also suggests that fluvial YOY may face barriers to thermal refugia, and as a result may be particularly vulnerable to climate change.  相似文献   
126.
127.
The ability to model algal productivity under transient conditions of light intensity and temperature is critical for assessing the profitability and sustainability of full-scale algae cultivation outdoors. However, a review of over 40 modeling approaches reveals that most of the models hitherto described in the literature have not been validated under conditions relevant to outdoor cultivation. With respect to light intensity, we therefore categorized and assessed these models based on their theoretical ability to account for the light gradients and short light cycles experienced in well-mixed dense outdoor cultures. Type I models were defined as models predicting the rate of photosynthesis of the entire culture as a function of the incident or average light intensity reaching the culture. Type II models were defined as models computing productivity as the sum of local productivities within the cultivation broth (based on the light intensity locally experienced by individual cells) without consideration of short light cycles. Type III models were then defined as models considering the impacts of both light gradients and short light cycles. Whereas Type I models are easy to implement, they are theoretically not applicable to outdoor systems outside the range of experimental conditions used for their development. By contrast, Type III models offer significant refinement but the complexity of the inputs needed currently restricts their practical application. We therefore propose that Type II models currently offer the best compromise between accuracy and practicability for full scale engineering application. With respect to temperature, we defined as “coupled” and “uncoupled” models the approaches which account and do not account for the potential interdependence of light and temperature on the rate of photosynthesis, respectively. Due to the high number of coefficients of coupled models and the associated risk of overfitting, the recommended approach is uncoupled models. Most of models do not include the modeling of endogenous respiration and the modeling of light and temperature acclimation in spite of their potential effect on productivity.  相似文献   
128.
Environmental cues, mostly photoperiod and temperature, mediated by effects on the neuroendocrine system, control reproductive diapause in female insects. Arrest of oocyte development characterizes female reproductive diapause, which has two major adaptive functions: It improves chances of survival during unfavorable season(s), and/or it confines oviposition to that period of the year that is optimal for survival of the eggs and progeny. Although reproductive diapause is less well studied in male insects, there may be no sex-dependent differences in regard to the first of these functions. The second one, however, is not valid for the male; instead, selection pressure directs the male's reproductive strategy toward maximum chances of fertilization of the female's eggs with minimum waste of energy. Therefore, in species with female reproductive diapause, the males may or may not exhibit diapause, but if they do, their diapause must be adapted to that existing in conspecific females. Male reproductive diapause is defined as a reversible state of inability of the male to inseminate receptive females. In relation to reproductive diapause, there are several patterns of coadaptations between male reproductive strategy and timing of female receptivity, (a) In some insects, the females are receptive in the early part of their diapause; mating occurs during this period and there is no diapause in the male. The male dies shortly after copulation and the female stores the sperms to fertilize the eggs that develop after termination of the female's diapause, (b) In some species, as in the grasshopper Anacridium aegyptium, females are receptive during diapause; though oocyte development is arrested, copulation occurs and the stored sperms fertilize the eggs when the female's diapause ends. Males were claimed to have no diapause, but recent studies have revealed the presence of a reproductive diapause in a proportion of the males. This and other cases show that female receptivity during reproductive diapause may or may not be accompanied by male reproductive diapause. If there is a reproductive diapause in the male, it is controlled by the same endocrine mechanism, the corpora allata (CA), as in the females, (c) In many species females are refractory during their diapause. In these cases, males exhibit reproductive diapause, which may be light, as in the beetle Oulema melanopus, or well established, as in certain grasshoppers, butterflies, and beetles. In the latter cases, male diapause is controlled by similar environmental cues (photoperiod, temperature) and by the same intrinsic mechanism (neuroendocrine system, especially CA) as female diapause. Nevertheless, male diapause is less intense; the environmental cues leading to its termination are less complex and/or less extreme, so male diapause terminates before that of the females. Presumably, male diapause is under two antagonistic selection pressures: A male should not waste energy by courting dia-pausing refractory females, but he should be ready to copulate as soon as the females become receptive, otherwise he may lose in the competition between males for females. Some further strategies, which do not seem to fit the above patterns, are also outlined.  相似文献   
129.
Rice seedlings maintained under uncontrolled glasshouse conditions were inoculated with conidial suspensions of a fungal pathogen, Helminthosporium oryzae, at various times during the 24 h. Significant increase in the percent germination and germ tube length of conidia were observed in the rice samples inoculated at 02:00 and 06:00h. The 24 h temporal variation in leaf temperature was positively correlated with variation in stomatal movements. The results indicate a 24 h rhythm in the behavior of the fungal pathogen on the host in relation to the conditions of the growing environment. In all the inoculated seedlings, the appearance of a large number of brown leaf spots was confined to the light span. Among the plants inoculated, earlier initiation of brown leaf spot appearance, maximum number of leaf spots, and highest disease severity were observed when plants were inoculated at 02:00h. There was a positive correlation between disease severity of the host and in vivo values of percent germination of conidia and germ tube length of the pathogen in plants inoculated between 02:00 and 06:00h. The findings of this study implicate that light intensity and temperature could play a predominant role in controlling disease susceptibility rhythms in plants.  相似文献   
130.
Dual-oscillator systems that control morning and evening activities can be found in a wide range of animals. The two coupled oscillators track dawn and dusk and flexibly adapt their phase relationship to seasonal changes. This is also true for the fruit fly Drosophila melanogaster that serves as model organism to understand the molecular and anatomical bases of the dual-oscillator system. In the present study, the authors investigated which temperature parameters are crucial for timing morning and evening activity peaks by applying natural-like temperature cycles with different daylengths. The authors found that the morning peak synchronizes to the temperature increase in the morning and the evening peak to the temperature decrease in the afternoon. The two peaks did not occur at fixed absolute temperatures, but responded flexibly to daylength and overall temperature level. Especially, the phase of the evening peak clearly depended on the absolute temperature level: it was delayed at high temperatures, whereas the phase of the M peak was less influenced. This suggests that the two oscillators have different temperature sensitivities. The bimodal activity rhythm was absent in the circadian clock mutants ClkJrk and cyc01 and reduced in per01 and tim01 mutants. Whereas the activity of ClkJrk mutants just followed the temperature cycles, that of per01 and tim01 mutants did not, suggesting that these mutants are not completely clockless. This study revealed new characteristics of the dual-oscillator system in Drosophila that were not detected under different photoperiods. (Author correspondence: )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号