首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   109篇
  国内免费   450篇
  2024年   2篇
  2023年   11篇
  2022年   20篇
  2021年   28篇
  2020年   24篇
  2019年   32篇
  2018年   26篇
  2017年   23篇
  2016年   23篇
  2015年   39篇
  2014年   46篇
  2013年   29篇
  2012年   36篇
  2011年   29篇
  2010年   37篇
  2009年   29篇
  2008年   61篇
  2007年   39篇
  2006年   20篇
  2005年   25篇
  2004年   32篇
  2003年   22篇
  2002年   25篇
  2001年   16篇
  2000年   26篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   13篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   4篇
  1958年   1篇
排序方式: 共有840条查询结果,搜索用时 15 毫秒
101.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:3,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   
102.
王大伟  国庆喜 《生态学报》2018,38(23):8400-8407
对森林空间结构的研究一直是生态学重要研究内容之一,林分中大径级个体直接影响周围林分的空间格局,当大径级个体成为倒木或枯立木时会造成较大林隙,这也将导致周围空间格局发生变化。利用小兴安岭凉水自然保护区内10.4 hm2样地的调查数据,统计了样地内乔木树种组成,分析计算样地内树木个体间的分布规律,探究大径级个体对周围邻木空间分布的影响。研究结果表明:样地中共有乔木24种,共计7412株(去除分株),隶属于11科18属,林分中大径级个体周围存在由小径级树木聚集生长形成的环形结构,该环形结构随着邻木径级的变化而变化,2级邻木(5.0≤DBH10.0 cm)主要在距离大径级个体3—7m范围内形成环形结构,3级邻木(10.0≤DBH30.0 cm)主要在距离大径级个体3—6 m范围内形成环形结构,而1级邻木(1.0≤DBH5.0 cm)与4级邻木(30.0≤DBH50.0 cm)并未形成环形结构,经分析环形结构的产生与林分内个体间的竞争存在密切关系,并且该结构与林隙斑块动态理论间存在内在联系,该结构是森林动态变化的一种表现形式,会伴随林木的生长产生或消失。另外研究表明大径级个体胸径的变化对邻木的环形结构分布范围也有一定影响,当大径级个体胸径增加时邻木的聚集范围有收缩的趋势。本次实验采用单次获取的林木数据,对于环形结构随时间的变化情况还有待进一步探究。  相似文献   
103.
《植物生态学报》2018,42(5):573
凋落物是森林生态系统养分的重要来源, 叶片脱落时间是影响其分解的关键因素。东北温带森林中蒙古栎(Quercus mongolica)落叶时间较其他树种晚, 在山脊等贫瘠立地叶片甚至第二年春天才脱落。我们假设: 相对于其他树种, 蒙古栎叶片养分元素含量过高、再吸收时间长, 导致叶片延迟脱落。为验证假设, 除蒙古栎外, 选择了落叶时间居中的色木槭(Acer mono)和落叶较早的胡桃楸(Juglans mandshurica)为对象, 持续监测叶片从成熟至凋落过程中叶片养分元素含量, 包括大量元素: 氮(N)、磷(P)、钾(K)、钙(Ca)和镁(Mg), 微量元素: 铁(Fe)、铜(Cu)、锰(Mn)和锌(Zn); 并分析养分再吸收率。结果表明: 蒙古栎成熟叶养分元素含量介于对照树种之间; 凋落叶N、P和K含量低于对照树种, Fe和Mn含量高于对照树种, 其余元素含量介于对照树种之间。该结果不支持“蒙古栎叶片养分含量过高”假设。蒙古栎叶片N、P和K再吸收率高于对照树种, 再吸收率高低与其落叶时间完全一致; 叶片Cu和Zn再吸收率与对照树种无显著差异; 叶片其余元素未发生再吸收, 其累积率与对照树种无显著差异; 说明养分再吸收与养分含量无关, 可能与树种的种专一性相关, 可能会影响叶片脱落时间。由于蒙古栎多生长在贫瘠土壤, 其成熟叶无法积累更多养分; 为避免叶片脱落后养分进入土壤被其他物种利用, 将养分尽量回收储存于自身, 即蒙古栎叶片养分再吸收过程较长, 叶片脱落较晚。生长在极端贫瘠立地的蒙古栎叶片次年春天才落叶, 可能是由于再吸收一直在进行, 来不及脱落而保留至新生长季开始。落叶晚的树种养分再吸收率高、有利于自身养分保存, 更能适应贫瘠土壤, 反之亦然。  相似文献   
104.
依据黑龙江省孟家岗林场49株人工落叶松1179个圆盘和轮盘数据,分析了心材半径的纵向变化规律.结果表明: 心材半径随树高增高而逐渐减小,与树干外形基本一致,其中去皮半径(XR)、胸径(DBH)及形成层年龄(CA)与心材半径之间关系较显著,利用逐步回归分析建立落叶松心材半径(HR)和面积(HA)模型:HR=b1+b2XR2+b3CA+b4XR, HA=b1+b2DBH·XR+b3CA+b4DBH·XR2.应用AIC、BIC、对数似然值以及似然比检验等模型评价指标,对利用样地、样木效应拟合的心材半径和面积模型进行比较.当考虑样木效应拟合心材半径和面积模型时,将b1、b2、b3作为混合参数得出的模型最好.混合模型的预测精度高于基本模型.在应用上,总体心材半径和面积可以通过混合模型来预测.采用Beta回归模型模拟了心材比例,模型中各参数均显著,决定系数较高,模型模拟效果较好.  相似文献   
105.
长白山阔叶红松林皆伐迹地土壤呼吸作用   总被引:10,自引:0,他引:10       下载免费PDF全文
 利用静态箱式法测量长白山阔叶红松(Pinus koraiensis)林伐后13年的皆伐迹地土壤呼吸作用。分析表明,皆伐迹地土壤呼吸作用日变化趋势呈单峰曲线,峰谷值出现时间较林地提前2~4 h,与土壤5 cm深度温度变化趋势基本一致。整个生长季节皆伐迹地土壤呼吸速率约为林地的75%,土壤温度与土壤呼吸作用存在显著的指数关系。在降水量集中的生长季,土壤水分对土壤呼吸作用具有一定的抑制作用,利用温度和水分双因子模型可以较好地解释皆伐迹地土壤呼吸作用的变异。阔叶红松林皆伐后生物量减少和微环境变化是造成土壤呼吸作用强度和动态特征发生变化的重要原因。  相似文献   
106.
土壤动物群落空间异质性及其与环境因子的空间作用关系, 是揭示土壤生态系统格局与过程及生物多样性维持机制的重要基础。作者于2015年生长季节(8月)、寒冷季节(10月)在丰林典型阔叶红松林动态监测样地内, 采用陷阱法调查地表鞘翅目成虫群落, 基于地统计空间分析方法, 揭示步甲科和隐翅虫科群落个体数和物种数及优势种的空间格局, 并分析这些空间格局与土壤含水量和地形因子的空间关联性。两次采样共捕获步甲科成虫26种617只, 隐翅虫科19种222只。8月群落个体数和物种数表现为中等变异, 10月为强变异, 群落组成在两个月间具有显著差异。生长季节(8月)和寒冷季节(10月)步甲科和隐翅虫科群落多表现为中等的空间自相关性, 空间分异由随机性因素和结构性因素共同决定。单个物种的个体数多具有中等的空间异质性特征, 且其空间分异主要由随机性因素和结构性因素共同调控。生长季节群落的个体数、物种数和优势种个体数多形成斑块和孔隙镶嵌分布的空间格局。物种之间及物种与环境因子之间多为复杂的空间关联性, 这些关联性主要受到结构性因素或随机性因素的单一调控。典范对应分析(canonical correspondence analysis, CCA)结果表明, 8月土壤含水量对步甲科和隐翅虫科物种分布影响显著, 10月凹凸度对步甲科分布影响显著, 海拔对隐翅虫科分布具有显著影响。本研究表明地表步甲科和隐翅虫科在生长季节形成明显的空间格局而在寒冷季节空间格局不明显, 为不同尺度地表土壤动物空间异质性和生物多样性维持机制研究提供了理论基础。  相似文献   
107.
植物形态性状叶面积简单易测, 能够反映植物对环境的适应与响应, 指示生态系统的功能与过程。在野外测定叶面积时, 叶片取样数量往往采用约定俗成的10-20片, 但到底采集多少叶片才是最优和最具代表性, 却少有探究。该研究以浙江金华山常绿落叶阔叶混交林的优势树种木荷(Schima superba)与枫香树(Liquidambar formosana)为研究对象, 通过对5个胸径等级植株和每个植株6个方位开展大批量叶片取样(>2 500个), 分析两个树种的叶面积变异特征, 探讨叶片取样数量为多少才能最代表该森林类型的叶片大小性状规律。结果表明, 常绿乔木木荷平均叶面积与变幅均小于落叶乔木枫香树。木荷叶面积与胸径无显著相关性, 而枫香树叶面积与胸径有较显著相关性, 但两个树种均在中胸径等级(15-20 cm)差异不显著; 两个树种的叶面积与采样方位无显著相关性, 但在东、西和底部的差异不显著。因此, 综合考虑代表性与野外可操作性, 叶片采集首选中胸径成树的底部叶片。随机抽样统计可知, 树木叶面积测定的最适叶片采集数量因物种而异, 木荷的最适叶片采集数量为40, 而枫香树最少为170片。因此, 在叶面积测定时, 叶片采集的数量应该不能只局限在10-20片, 在人力、物力和时间等条件允许的情况下, 应该尽可能多地测定较多叶片的叶面积。  相似文献   
108.
冠层绿色叶片(光合组分)的光合有效辐射分量(绿色FPAR)真实地反映了植被与外界进行物质和能量交换的能力,获取冠层光合组分吸收的太阳光合有效辐射,对生态系统生产力的遥感估算精度的提高具有重要的意义。研究以落叶阔叶林为例,基于SAIL模型模拟森林冠层光合组分和非光合组分吸收的光合有效辐射,研究冠层FPAR变化规律以及与植被指数的相关关系。结果表明,冠层结构的改变会影响冠层对PAR的吸收能力,冠层绿色FPAR的大小与植被面积指数及光合组分面积比相关;在高覆盖度植被区,冠层绿色FPAR占冠层总FPAR的80%以上,非光合组分的贡献较小,但在低植被覆盖区,当光合组分和非光合组分面积相同时,绿色FPAR不及冠层总FPAR的50%;相比于NDVI,北方落叶阔叶林冠层EVI与绿色FPAR存在更为显著的线性相关关系(R~20.99)。  相似文献   
109.
刘超明  唐美庆  马坤  刘星韵  于涵  张颖 《生态学报》2017,37(7):2334-2341
为探究植物对大气氮沉降的响应和对这部分氮素的来源指示作用,本研究通过对北京地区198个采样点,典型落叶阔叶乔木杨属(Populus)和柳属(Salix)植物叶片进行采样,测定其叶片样品含氮量和δ~(15)N值。结果表明:北京地区杨属植物叶片含氮量为16.5—38.6g/kg,平均(24.0±4.0)g/kg;柳属植物叶片含氮量为17.2—36.2g/kg,平均(25.9±4.1)g/kg。研究区域范围内杨属、柳属植物叶片的含氮量均呈现出西北低、东南高的对角线型分布,与该区域大气氮沉降的空间变异相吻合。由于研究区域范围内气候因子无明显的变异,植物叶片的含氮量变化反应了大气氮沉降对植物元素化学计量特征的影响和植物对大气氮沉降的响应。北京地区杨属植物叶片δ~(15)N值为-3.95‰—8.10‰,平均(1.15±2.48)‰;柳属植物叶片δ~(15)N值为-3.04‰—9.73‰,平均(2.31±2.60)‰。杨属和柳属植物叶片的δ~(15)N值均呈现出西北高、中部高、东南低的空间分布,与叶片含氮量空间分布趋势相反。中部城区较高的δ~(15)N值反应了交通污染对大气含氮化合物增加的影响;西北部较高的δ~(15)N值反应了该区域受人为活动排放源的影响较少,自然的氮循环是其较高δ~(15)N值的主要原因;东南部较低的δ~(15)N值则有可能是由农业活动和交通共同作用的结果。  相似文献   
110.
喀斯特常绿落叶阔叶混交林土壤磷钾养分空间异质性   总被引:9,自引:2,他引:7  
王华  陈莉  宋敏  宋同清  曾馥平  彭晚霞  杜虎  苏樑 《生态学报》2017,37(24):8285-8293
在木论国家级自然保护区内喀斯特常绿落叶阔叶混交林内建立500 m×500 m长期监测样地,采用经典统计学和地统计学方法研究喀斯特森林土壤磷钾养分含量及其空间变异特征。结果表明:研究区土壤全磷(TP)、全钾(TK)、速效磷(AP)、速效钾(AK)含量分别为(1.60±0.76)g/kg、(5.42±2.74)g/kg、(5.74±3.63)mg/kg、(5.20±2.96)mg/kg;磷钾养分含量均为中等变异,变异强度为APAKTKTP。研究区土壤TP、TK、AP、AK变异函数值的最佳拟合模型均为指数模型,决定系数均很高(0.671-0.995),TP、AP呈中等强度空间自相关,TK、AK呈弱空间自相关。TP、AP的变程较长,分别为336.00 m和373.50 m,空间连续性较好,TK、AK变程较短(33.30 m、64.50 m),空间依赖性较强。土壤TP表现为坡下(含洼地)含量高,坡上含量较低;AK表现为坡中含量高于洼地含量;AP、TK呈斑块破碎化分布。海拔、坡度和地面凹凸度是土壤磷钾养分空间异质性的主要影响因素。喀斯特常绿落叶阔叶混交林土壤磷钾养分存在不同空间异质性和空间关联性,这为小流域尺度上土壤养分管理、可持续利用策略、喀斯特退化生态系统生态恢复提供理论依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号