首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   67篇
  国内免费   179篇
  2023年   13篇
  2022年   18篇
  2021年   19篇
  2020年   33篇
  2019年   42篇
  2018年   32篇
  2017年   26篇
  2016年   31篇
  2015年   27篇
  2014年   20篇
  2013年   28篇
  2012年   23篇
  2011年   24篇
  2010年   18篇
  2009年   20篇
  2008年   29篇
  2007年   37篇
  2006年   32篇
  2005年   24篇
  2004年   17篇
  2003年   14篇
  2002年   19篇
  2001年   13篇
  2000年   8篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有626条查询结果,搜索用时 265 毫秒
101.
A study was conducted during the 1996–97 crop growth season at ICARDA in northern Syria, to investigate the influence of wheat canopy architecture on the partitioning of moisture between soil evaporation and crop transpiration, on a soil with high hydraulic conductivity. The study was conducted on the long-term two course wheat-lentil rotation trial, established on a swelling clay soil (Calcixerollic xerochrept). The wheat canopy architecture was manipulated by sowing the crop at either of two row-spacings, 0.17 or 0.30 m, both at a constant sowing rate equivalent to 120 kg ha–1. In this study, evapotranspiration from the crop was inferred from changes in soil moisture content over time, evaporation and rainfall interception were measured daily using microlysimetry, drainage was estimated as being the difference between potential daily evapotranspiration, and the evapotranspiration estimated from the soil water deficit. Between sowing and day 80 (tillering stage), evapotranspiration was calculated to consist mainly of soil evaporation. However, after day 80, transpiration became an increasingly dominant component of evapotranspiration. For both row-spacings, cumulative evapotranspiration over the season was approximately 373 mm. In the narrow-row crop, transpiration and soil evaporation were approximately 185 mm and 183 mm of water respectively. Conversely for the wide row-spaced crop, 172 mm of water was transpired while about 205 mm of water evaporated from the soil surface. While green leaf area index did not differ between row-spacings, the architecture of the crops as a result of sowing affected solar radiation penetration such that more incident radiation was intercepted at the soil surface of the wide row-spaced crop. This is likely to have made some contribution to the elevated levels of evaporation from the soil beneath the canopy of the wide-sown crop.  相似文献   
102.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   
103.
Abstract Leaf miners are insects whose larval stages live between layers of leaf epidermis, feeding on mesophyll and lower epidermis to create mine‐like cavities. Little is known about the ecology or distribution of leaf miners in Australia. We investigated the incidence of leaf miners in relation to aridity, vegetation types, host plant taxonomy, leaf traits, canopy cover and latitude. We surveyed leaf miners at 15 sites in NSW, eastern Australia, situated along a rainfall gradient from 300 to 1700 mm per annum and a latitudinal gradient of 28°S to 33°S, within four vegetation types (mallee, heath, woodland and rainforest). Leaf mining was recorded from 36 plant species, 89% of which had no previous record of mining. The proportion of mined plant species at each site varied, but there was no significant difference between vegetation types. Leaf mining presence was positively correlated with both total leaf length and leaf thickness. No significant correlations were found between the proportion of mined species at a site and rainfall, latitude or foliar projected cover. We conclude that leaf mining is a widespread type of insect herbivory whose distribution patterns are more likely to be influenced by biotic than abiotic factors.  相似文献   
104.
杜仲是我国南方红壤丘陵区重要的水土保持经济树种,为了阐明人工杜仲林地表径流和土壤侵蚀的特征及其与降雨特征的关系,2002-2005年在典型的杜仲人工林设置径流小区,进行定位观测,结果表明:1)观测期间,研究区主要以降雨量(R)<25 mm、降雨强度(I)<5 mm·h-1的降雨为主;2)降雨量(R)、降雨量与降雨强度的乘积(R·I)、降雨侵蚀力(R30)与土壤侵蚀量和径流均表现出极显著的线性相关关系;在对特定的降雨条件下的坡面侵蚀进行预测的时候,用R30进行预测比用R·I更接近通用土壤流失方程降雨影响因子的内涵;3)对杜仲人工林径流深(Rd)与降雨侵蚀力(R30)的乘积(Rd·R30)与土壤侵蚀量进行拟合,结果表明,二者达到极显著线性相关性(r=0.685,P<0.01),比单一用径流进行坡面侵蚀预测更符合水蚀产沙过程.  相似文献   
105.
对鼎湖山大气降水、季风常绿阔叶林林冠穿透水、土壤水(30cm和80cm深)以及溪水中某些沉积元素进行了系统连续的观测研究,从沉积元素的转移过程阐明了鼎湖山自然保护区和季风常绿阔叶林所承受的环境压力,通过分析沉积元素在这些水文学过程中的浓度变化和相互联系,试图揭示该生态系统相应功能过程变化的规律。得到如下结果:(1)大气降水中的Pb含量远远高于穿透水、土壤水(30cm和80cm深)以及溪水中的含量,随着水分由输入向输出流动,Pb的浓度逐渐降低;(2)在大气降水、林冠穿透水、土壤水(30cm和80cm深)以及溪水中,Al离子的浓度逐步增加;(3)除Pb外,所有其他元素(Al、Mn、sr、Mg、Na、K和Ca)在土壤溶液中的浓度都高于5个水文过程的平均值;(4)Mn、K、Ca的输入和输出的浓度都不高;(5)Na和Mg在土壤水和溪水中的浓度超过5个水文过程的平均值。这表明:(1)鼎湖山的大气具有高浓度的Pb含量,而且Pb在季风常绿阔叶林系统中处于一个持续的积累过程;(2)酸性降水不仅活化了土壤中的Al元素,对各个水文学过程中的离子浓度也有增大的作用;(3)Na和Mg在当前的大气环境下有可能加速地从季风常绿阔叶林生态系统中淋洗出来。总之,由于酸雨和大气污染的影响,鼎湖山森林生态系统将处于不稳定状态。  相似文献   
106.
通过野外控制实验,研究了高寒矮嵩草草甸群落植物多样性、初级生产力对模拟降雨条件的响应.结果表明: 1 在植物生长期 6月 ,增加降雨20%、增加降雨40%,植物群落物种多样性指数 H 和均匀度指数 J 分别比对照提高了0.188和0.011、0.735和0.076,生长期 7月 增加降雨20%物种H和J提高了0.409和0.07; 2 禾草类:增加降雨20%处理的地上生物量与对照相比没有明显的显著性差异 P>0.05 ,增加降雨40%处理的地上生物量与对照相比差异显著 P<0.05 ,说明过多增加降雨会抑制禾草的生长发育.杂类草:减少降雨50%处理的地上生物量与对照相比差异显著 P<0.05 ,其地上生物量对减少降雨的反映比较敏感.莎草类:其地上生物量对增加和减少降雨都没有显著变化; 3 0~10cm和0~30cm土层地下生物量均在增加降雨20%时最高,地下生物量的总量也在增加降雨20%时最高; 4 矮嵩草草甸地下生物量与地上生物量、总生物量的比值接近于生长季末时最大,且在模拟增加降雨20%的水平时,7、8、9月份地下和地上生物量较其它处理组高.  相似文献   
107.
Abstract This review summarizes recent research in Australia on: (i) climate and geophysical trends over the last few decades; (ii) projections for climate change in the 21st century; (iii) predicted impacts from modelling studies on particular ecosystems and native species; and (iv) ecological effects that have apparently occurred as a response to recent warming. Consistent with global trends, Australia has warmed ~0.8°C over the last century with minimum temperatures warming faster than maxima. There have been significant regional trends in rainfall with the northern, eastern and southern parts of the continent receiving greater rainfall and the western region receiving less. Higher rainfall has been associated with an increase in the number of rain days and heavy rainfall events. Sea surface temperatures on the Great Barrier Reef have increased and are associated with an increase in the frequency and severity of coral bleaching and mortality. Sea level rises in Australia have been regionally variable, and considerably less than the global average. Snow cover and duration have declined significantly at some sites in the Snowy Mountains. CSIRO projections for future climatic changes indicate increases in annual average temperatures of 0.4–2.0°C by 2030 (relative to 1990) and 1.0–6.0°C by 2070. Considerable uncertainty remains as to future changes in rainfall, El Niño Southern Oscillation events and tropical cyclone activity. Overall increases in potential evaporation over much of the continent are predicted as well as continued reductions in the extent and duration of snow cover. Future changes in temperature and rainfall are predicted to have significant impacts on most vegetation types that have been modelled to date, although the interactive effect of continuing increases in atmospheric CO2 has not been incorporated into most modelling studies. Elevated CO2 will most likely mitigate some of the impacts of climate change by reducing water stress. Future impacts on particular ecosystems include increased forest growth, alterations in competitive regimes between C3 and C4 grasses, increasing encroachment of woody shrubs into arid and semiarid rangelands, continued incursion of mangrove communities into freshwater wetlands, increasing frequency of coral bleaching, and establishment of woody species at increasingly higher elevations in the alpine zone. Modelling of potential impacts on specific Australian taxa using bioclimatic analysis programs such as bioclim consistently predicts contraction and/or fragmentation of species' current ranges. The bioclimates of some species of plants and vertebrates are predicted to disappear entirely with as little as 0.5–1.0°C of warming. Australia lacks the long‐term datasets and tradition of phenological monitoring that have allowed the detection of climate‐change‐related trends in the Northern Hemisphere. Long‐term changes in Australian vegetation can be mostly attributed to alterations in fire regimes, clearing and grazing, but some trends, such as encroachment of rainforest into eucalypt woodlands, and establishment of trees in subalpine meadows probably have a climatic component. Shifts in species distributions toward the south (bats, birds), upward in elevation (alpine mammals) or along changing rainfall contours (birds, semiarid reptiles), have recently been documented and offer circumstantial evidence that temperature and rainfall trends are already affecting geographic ranges. Future research directions suggested include giving more emphasis to the study of climatic impacts and understanding the factors that control species distributions, incorporating the effects of elevated CO2 into climatic modelling for vegetation and selecting suitable species as indicators of climate‐induced change.  相似文献   
108.
准噶尔盆地两种荒漠群落土壤呼吸速率对人工降水的响应   总被引:5,自引:0,他引:5  
通过野外定位观测准噶尔盆地荒漠植物群落(假木贼群落和盐穗木群落)在不同人工模拟降水强度下的土壤呼吸、土壤温度和湿度动态,探讨了荒漠群落土壤呼吸速率对降水后土壤增湿的响应.结果发现两种荒漠植物群落的土壤呼吸速率均出现了模拟降水后10min减小、随后逐渐增加、达到最大值后再次衰减的现象.降水处理的土壤呼吸速率最大值出现滞后于对照处理,且呼吸速率最大值及最大值后的递减速率普遍高于对照.降水后土壤呼吸速率变化受温度和土壤湿度共同影响,降水后10min土壤呼吸速率的减小与土壤湿度最大值同步,呼吸速率最大值出现时间与地表温度一致,在降水后180~300min.2类群落3种降水处理间的土壤呼吸速率在模拟降水后(0~450min时段)均未达到显著差异.假木贼群落以5mm降水处理的平均土壤呼吸速率最大,盐穗木群落则以2.5mm 处理最大.土壤呼吸速率对模拟降水的响应受降水量、降水前土壤湿润状况、土壤质地等多种因素影响.  相似文献   
109.
In a recent paper in this journal, Bradshaw and colleagues analyse country statistics on flood characteristics, land cover and land cover change, and conclude that deforestation amplifies flood risk and severity in the developing world. The study addresses an important and long-standing question, but we identify important flaws. Principal among these are difficulties in interpreting country statistics and the correlation between population and floods. We review current knowledge, which suggests that the removal of trees does not affect large flood events, although associated landscape changes can under some circumstances. Reanalysis of the data analysed by Bradshaw and colleagues shows that population density alone already explains up to 83% of the variation in reported flood occurrences, considerably more than forest cover or deforestation (<10%). Feasible explanations for this statistical finding – whether spurious or causative – are not difficult to conceive. We, therefore, consider the conclusion of Bradshaw and colleagues to be unsupported. However, their study is a valuable first step to show how these or similar flood data might be used to further explore the relationship between land cover and flooding.  相似文献   
110.
The abundance and composition of seed rain was measured over 14 months (February 2004 to March 2005) in Currawinya National Park, western Queensland. The experimental design included four measurement periods, three vegetation communities and two grazing regimes. A total of 12 586 seeds from 104 species were captured. There were significantly more seeds and species captured during the measurement period with the least rainfall, although no significant correlation was found between the amount of rainfall and the number of seeds or species captured. More seeds and species were captured where native and feral grazing pressure was removed, but this was only significant for the number of species. The above‐ground vegetation showed no significant difference between grazing treatments over the study period and exhibited far fewer species than the seed rain. However, the majority of species found in the above‐ground vegetation were represented in the seed rain. Hypotheses are explored as an attempt to understand the apparent lack of a relationship between seed rain and rainfall. The effects of grazing and seed movement and storage are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号