首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   11篇
  国内免费   20篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   12篇
  2014年   3篇
  2013年   4篇
  2012年   11篇
  2011年   6篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有162条查询结果,搜索用时 78 毫秒
101.
Plant salt tolerance: adaptations in halophytes   总被引:1,自引:0,他引:1  
Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes.Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes.Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils.  相似文献   
102.
A Na+/H+ antiporter catalyzes the transport of Na+ and H+ across the tonoplast membrane. We isolated a vacuolar Na+/H+ antiporter cDNA (SsNHX1) clone from a euhalophyte, Suaeda salsa. The nuclear sequence contains 2262 bp with an open reading frame of 1665 bp. The deduced amino acid sequence is similar to that of AtNHX1 and OsNHX1 in rice, with the highest similarities within the predicted transmembrane segments and an amiloride-binding domain. Northern blot analysis shows that the expression of the S. salsa gene was increased by salt stress. The results suggest that the SsNHX1 product is likely a Na+/H+ antiporter and may play important roles in the salt tolerance of S. salsa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
103.
The present study aimed to find out suitable conditions for the In vitro culture of Sallcornla europaea L. and to develop an efficient regeneration system. S. europaea plants were regenerated successfully In vitro from callus derived from mature embryos. Via the method of 2,4-dlchlorophenoxyacetlc acid (2,4-D)-short-treatment on mature seeds, callus was Induced from hypocotyls on the MS medium with 4.55 μmol/L N-phenyl-N'-1, 2, 3-thladlazol-5-yl urea (TDZ) 3-4 weeks after the seeds germinated. The callus differentiated Into shoots at a rate of 27.6% after subculture for one time on the same medium. When NaCl was Included In the medium, shoots were formed In cluster and the shoot differentiation frequency was Increased to 55.2%. The shoots were rooted when cultured on 1/2 MS medium supplemented with Indole-3-butyric acid (IBA), kinetin (KN) end activated charcoal (AC). The results Indicated that NeCl and TDZ played an Important role In the Improvement of the regeneration rate of the halophyte, S. europaea.  相似文献   
104.
In Salicornia, morphology does not provide reliable diagnostic characters supporting the true extent of evolutionary divergence in the genus, and species concepts have been challenged by molecular analyses. Here, we report the results of an analysis of 91 accessions of the S. meyeriana complex from South Africa and Namibia using the measurements of 38 morphological traits and external transcribed spacer (ETS) sequence data. Morphological data were analysed using discriminant analysis, principal coordinate analysis and nonmetric multidimensional scaling. Phylogenetic divergence was compared with the geographical and ecological diversity of the sampled populations. Tree topology corresponds to geography and ecology, but not to morphology. Most clades have distinct distribution areas and ecological profiles related to tidal, supratidal or inland saline habitats. Salicornia probably diversified in habitats that have experienced regular fragmentation by marine transgression/regression cycles during the Pleistocene. We suggest that this radiation produced young, but genetically, geographically and ecologically well‐defined lineages. The lack of morphological signal reveals the existence of cryptic species in Salicornia and demonstrates the necessity of using molecular data to define taxa in this genus. We propose the recognition of two subspecies in the S. meyeriana complex: S. meyeriana subsp. meyeriana and S. meyeriana subsp. knysnaensis. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 175–186.  相似文献   
105.
盐胁迫下海马齿叶片结构变化   总被引:3,自引:0,他引:3  
用石蜡切片法制片、光学显微镜观察了海马齿植物营养器官--叶片的盐适应结构变化,以明确盐生植物对盐渍生境适应的叶片结构变化特征,为盐生植物的耐盐机理研究提供依据.结果表明:(1)海马齿植物叶片表现出许多适应干旱和盐渍环境的特点,其基本特征为:叶片肉质化,为典型的等面叶;栅栏组织发达,且含有大量叶绿体;叶表皮气孔微下陷,叶表皮细胞外壁的角质层较薄,表皮细胞大小不等,外切向壁外凸,参差不齐,有些表皮细胞特化为泡状细胞,其数量与盐胁迫的浓度呈正相关.(2)叶的海绵组织中含有大量的薄壁细胞,幼叶海绵组织的薄壁细胞在0.5%~2.5% NaCl胁迫下均变大,且数量也增加;而老叶海绵组织的薄壁细胞只有在低浓度(0.5% NaCl)的盐胁迫下变大,而在高浓度下其薄壁细胞反而变小或成不规则形状.(3)盐晶广泛分布在海马齿的叶肉组织细胞内,且其数量随着盐胁迫浓度增加而增加.  相似文献   
106.
The effects of NaCl stress on the activity of anti-oxidant enzymes (superoxide dismutase, catalase (CAT),peroxidase (POD),ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR), and glutathionereductase (GR)), anti-oxidant molecules (ascorbate and glutathione), and parameters of oxidative stress (malondialdehyde(MDA), electrolyte leakage, and H_2O_2 concentrations) were investigated in Cakile maritima, a halophyte frequent along theTunisian seashore. Seedlings were grown in the presence of salt (100, 200, and 400 mmol/L NaCI). Plants were harvestedperiodically over 20 days. Growth was maximal in the presence of 0-100 mmol/L NaCl. At 400 mmol/L NaCl, growthdecreased significantly. The salt tolerance of C. maritima, at moderate salinities, was associated with the lowest values ofthe parameters indicative of oxidative stress, namely the highest activities of POD, CAT, APX, DHAR, and GR and high tissuecontent of ascorbate and glutathione. However, prolonged exposure to high salinity resulted in a decrease in anti-oxidantactivities and high MDA content, electrolyte leakage, and H_2O_2 concentrations. These results suggest that anti-oxidantsystems participate in the tolerance of C. maritima to moderate salinities.  相似文献   
107.
Yi L P  Ma J  Li Y 《农业工程》2007,27(9):3565-3571
North-West China is an arid region where halophyte plants are rich. Very little is known on the rhizospheric soil of the halophytes in this arid desert region. We conducted a rhizobag experiment on the desert Solonchak soil to investigate the salt and nutrient content in the rhizospheric soil of the desert halophytes. The total salt and the concentrations of 8 major kinds of salt ions increased in the rhizosphere of both succulent halophytes and salt secreting halophytes, but this increase was insignificant for salt-resisting halophytes. Accumulation of Cl and Na+ is the most significant among the 8 major kinds of salt ions. Accumulation of Cl was more significant than that of SO42– in succulent halophytes and salt secreting halophytes. The Na+/K+, Na+/Ca2+ and Na+/Mg2+ ratios in the rhizosphere of all 7 kinds of halophytes were higher than those in the bulk soil. Total N increased significantly in the rhizosphere, but total P and total K decreased. However, the available N, P and K in the rhizosphere of the 7 kinds of halophytes except Phragmites communis Trin. behaved in such an opposite way that available N decreased but available P and available K increased. The ionic contents in the aboveground parts were higher than those in the underground parts of the 7 kinds of halophytes, in particular of both the succulent halophytes and the salt secreting halophytes. Accumulation of Cl and Na+ in the aboveground parts of the plants was the most significant among that of the 8 major kinds of salt ions.  相似文献   
108.
Flooding tolerance in halophytes   总被引:3,自引:1,他引:2  
Flooding is a common environmental variable with salinity. Submerged organs can suffer from O2 deprivation and the resulting energy deficits can compromise ion transport processes essential for salinity tolerance. Tolerance of soil waterlogging in halophytes, as in glycophytes, is often associated with the production of adventitious roots containing aerenchyma, and the resultant internal O2 supply. For some species, shallow rooting in aerobic upper soil layers appears to be the key to survival on frequently flooded soils, although little is known of the anoxia tolerance in halophytes. Halophytic species that inhabit waterlogged substrates are able to regulate their shoot ion concentrations in spite of the hypoxic (or anoxic) medium in which they are rooted, this being in stark contrast with most other plants which suffer when salinity and waterlogging occur in combination. Very few studies have addressed the consequences of submergence of the shoots by saline water; these have, however, demonstrated tolerance of temporary submergence in some halophytes.  相似文献   
109.
Living with salinity   总被引:1,自引:0,他引:1  
Byrt CS  Munns R 《The New phytologist》2008,179(4):903-905
  相似文献   
110.
Ultrastructure of root cells in salt-accumulating halophyte Suaeda altissima (L.) Pall. was examined with transmission electron microscopy. Plants were grown hydroponically on nutrient media containing 3, 50, 250, and 500 mM NaCl. Some plants were exposed to hypersomotic salt shock by an abrupt increase in NaCl concentration from 50 to 400 mM. Growing S. altissima plants at high NaCl concentrations induced the formation of type 1 pinocytotic structures in root cells. Type 1 structures appeared as pinocytotic invaginations of two membranes, the plasmalemma and tonoplast. These invaginations into vacuoles gave rise to freely ‘floating’ multivesicular bodies (MVB) enclosed by a double membrane layer. The pinocytotic invaginations and MVB contained the plasmalemma-derived vesicles and membranes of endosome origin. The hyperosmotic salt shock led to formation of type 2 and type 3 pinocytotic structures. The type 2 structures were formed as pinocytotic invaginations of the tonoplast and gave rise to MVB in vacuoles. Unlike type 1 MVB, the type 2 MVB had only one enclosing membrane, the tonoplast. The type 3 structures appeared as the plasmalemma-derived vesicles located in the periplasmic space. The cytochemical electron-microscopy method was applied to determine the intracellular Cl? localization. This method, based on sedimentation of electron-dense AgCl granules in tissues treated with silver nitrate, showed that the pinocytotic structures of all types contain Cl? ions. The presence of Cl? in pinocytotic structures implies the involvement of these structures in Cl? transport between the apoplast, cytoplasm, and the vacuole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号