首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   13篇
  国内免费   2篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   16篇
  2013年   24篇
  2012年   14篇
  2011年   19篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   16篇
  2006年   12篇
  2005年   6篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   14篇
  1997年   9篇
  1996年   11篇
  1995年   2篇
  1994年   8篇
  1993年   6篇
  1992年   11篇
  1991年   10篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   11篇
  1986年   6篇
  1985年   7篇
  1984年   11篇
  1983年   7篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有404条查询结果,搜索用时 156 毫秒
101.
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.  相似文献   
102.
Glioblastomas (GBMs) are highly lethal brain tumours with current therapies limited to palliation due to therapeutic resistance. We previously demonstrated that GBM stem cells (GSCs) display a preferential activation of DNA damage checkpoint and are relatively resistant to radiation. However, the molecular mechanisms underlying the preferential checkpoint response in GSCs remain undefined. Here, we show that L1CAM (CD171) regulates DNA damage checkpoint responses and radiosensitivity of GSCs through nuclear translocation of L1CAM intracellular domain (L1-ICD). Targeting L1CAM by RNA interference attenuated DNA damage checkpoint activation and repair, and sensitized GSCs to radiation. L1CAM regulates expression of NBS1, a critical component of the MRE11-RAD50-NBS1 (MRN) complex that activates ataxia telangiectasia mutated (ATM) kinase and early checkpoint response. Ectopic expression of NBS1 in GSCs rescued the decreased checkpoint activation and radioresistance caused by L1CAM knockdown, demonstrating that L1CAM signals through NBS1 to regulate DNA damage checkpoint responses. Mechanistically, nuclear translocation of L1-ICD mediates NBS1 upregulation via c-Myc. These data demonstrate that L1CAM augments DNA damage checkpoint activation and radioresistance of GSCs through L1-ICD-mediated NBS1 upregulation and the enhanced MRN-ATM-Chk2 signalling.  相似文献   
103.
We have previously demonstrated that a proapoptotic cyclic peptide CIGB-300, formerly known as P15-Tat delivered into the cells by the cell-penetrating peptide Tat, was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice or by systemic administration. In this work, we studied the role of CIGB-300 on the main events that take place in angiogenesis. At non-cytotoxic doses, CIGB-300 was able to inhibit adhesion, migration, and tubular network formation induced by human umbilical vein endothelial cells (HUVEC) growing upon Matrigel in vitro. Likewise, we evaluated the cellular penetration and localization into the HUVEC cells of CIGB-300. Our results confirmed a quick cellular penetration and a cytoplasmic accumulation in the early minutes of incubation and a translocation into the nuclei beginning at 12 h of treatment, with a strong presence in the perinuclear area. A microarray analysis was used to determine the genes affected by the treatment. We observed that CIGB-300 significantly decreased four genes strongly associated with tubulogenesis, growth, and differentiation of endothelial cells. The CIGB-300 was tested in vivo on chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. The results suggested that CIGB-300 has a potential as an antiangiogenic treatment. The mechanism of action may be associated with partial inhibition of VEGF and Notch pathways.  相似文献   
104.
The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NFκB) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca2+ influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca2+ influx in PI3K/AKT and NFκB signaling. Blocking constitutive function of Ca2+-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of IκBα, AKT and its downstream target BAD in TNFα-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNFα-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca2+ influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca2+ influx and activation of survival signaling.  相似文献   
105.
《Annals of botany》2010,105(4):573-584

Background and Aims

Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of ‘this ecological circumstance’ is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this ‘missing link’: the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency.

Methods

Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out.

Key Results

Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa.

Conclusions

Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.  相似文献   
106.
107.
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic (“neutral”) vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of “neutral” vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the “neutral” vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.  相似文献   
108.
Activation of the fibroblast growth factor receptor (FGFR) by neural cell adhesion molecule (NCAM) is essential for NCAM-mediated neurite outgrowth. Previous peptide studies have identified two regions in the fibronectin type 3 (FN3)-like domains of NCAM as being important for these activities. Here we report the crystal structure of the NCAM FN3 domain tandem, which reveals an acutely bent domain arrangement. Mutation of a non-conserved surface residue (M610R) led to a second crystal form showing a substantially different conformation. Thus, the FN3 domain linker is highly flexible, suggesting that it corresponds to the hinge seen in electron micrographs of NCAM. The two putative FGFR1-binding segments, one in each NCAM FN3 domain, are situated close to the domain interface. They form a contiguous patch in the more severely bent conformation but become separated upon straightening of the FN3 tandem, suggesting that conformational changes within NCAM may modulate FGFR1 activation. Surface plasmon resonance experiments demonstrated only a very weak interaction between the NCAM FN3 tandem and soluble FGFR1 proteins expressed in mammalian cells (dissociation constant > 100 μM). Thus, the NCAM-FGFR1 interaction at the cell surface is likely to depend upon avidity effects due to receptor clustering.  相似文献   
109.
Protein-engineering methods (Φ-values) were used to investigate the folding transition state of a lysin motif (LysM) domain from Escherichia coli membrane-bound lytic murein transglycosylase D. This domain consists of just 48 structured residues in a symmetrical βααβ arrangement and is the smallest αβ protein yet investigated using these methods. An extensive mutational analysis revealed a highly robust folding pathway with no detectable transition state plasticity, indicating that LysM is an example of an ideal two-state folder. The pattern of Φ-values denotes a highly polarised transition state, with significant formation of the helices but no structure within the β-sheet. Remarkably, this transition state remains polarised after circularisation of the domain, and exhibits an identical Φ-value pattern; however, the interactions within the transition state are uniformly weaker in the circular variant. This observation is supported by results from an Eyring analysis of the folding rates of the two proteins. We propose that the folding pathway of LysM is dominated by enthalpic rather than entropic considerations, and suggest that the lower entropy cost of formation of the circular transition state is balanced, to some extent, by the lower enthalpy of contacts within this structure.  相似文献   
110.
Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m?2 year?1, mean ± 95% confidence interval) indicated the site was a net sink of ?333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was ?1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha?1 year?1. Average integrated daily FA,EC was ?234 ± 5 mmol CO2 m?2 d?1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号