首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   23篇
  国内免费   18篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2018年   14篇
  2017年   14篇
  2016年   12篇
  2015年   10篇
  2014年   15篇
  2013年   21篇
  2012年   10篇
  2011年   26篇
  2010年   19篇
  2009年   32篇
  2008年   36篇
  2007年   26篇
  2006年   39篇
  2005年   29篇
  2004年   21篇
  2003年   11篇
  2002年   17篇
  2001年   10篇
  2000年   8篇
  1999年   8篇
  1998年   6篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   12篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
101.
An accurately resolved gene tree may not be congruent with the species tree because of lineage sorting of ancestral polymorphisms. DNA sequences from the mitochondrially encoded genes (mtDNA) are attractive sources of characters for estimating the phylogenies of recently evolved taxa because mtDNA evolves rapidly, but its utility is limited because the mitochondrial genes are inherited as a single linkage group (haplotype) and provide only one independent estimate of the species tree. In contrast, a set of nuclear genes can be selected from distinct chromosomes, such that each gene tree provides an independent estimate of the species tree. Another aspect of the gene-tree versus species-tree problem, however, favors the use of mtDNA for inferring species trees. For a three-species segment of a phylogeny, the branching order of a gene tree will correspond to that of the species tree if coalescence of the alleles or haplotypes occurred in the internode between the first and second bifurcation. From neutral theory, it is apparent that the probability of coalescence increases as effective population size decreases. Because the mitochondrial genome is maternally inherited and effectively haploid, its effective population size is one-fourth that of a nuclear-autosomal gene. Thus, the mitochondrial-haplotype tree has a substantially higher probability of accurately tracking a short internode than does a nuclear-autosomal-gene tree. When an internode is sufficiently long that the probability that the mitochondrial-haplotype tree will be congruent with the species tree is 0.95, the probability that a nuclear-autosomalgene tree will be congruent is only 0.62. If each of k independently sampled nuclear-gene trees has a probability of congruence with the species tree of 0.62, then a sample of 16 such trees would be required to be as confident of the inference based on the mitochondrial-haplotype tree. A survey of mtDNA-haplotype diversity in 34 species of birds indicates that coalescence is generally very recent, which suggests that coalescence times are typically much shorter than internodal branch lengths of the species tree, and that sorting of mtDNA lineages is not likely to confound the species tree. Hybridization resulting in transfer of mtDNA haplotypes among branches could also result in a haplotype tree that is incongruent with the species tree; if undetected, this could confound the species tree. However, hybridization is usually easy to detect and should be incorporated in the historical narrative of the group, because reticulation, as well as cladistic events, contributed to the evolution of the group.  相似文献   
102.
The binary classification of landscapes into suitable vs. unsuitable areas underlies several prominent theories in conservation biogeography. However, a binary classification is not always appropriate. The textural discontinuity hypothesis provides an alternative theoretical framework to examine the geographical distribution of species, and does not rely on a binary classification scheme. The texture of a given landscape is the combination of its vertical structural complexity and horizontal spatial grain. The textural discontinuity hypothesis states that biophysical features in the environment are scaled in a discontinuous way, and that discontinuities in the body size distribution of animals mirror these biophysical discontinuities. As a result of this relationship, a complex landscape texture should be associated with small‐bodied animals, whereas a simple landscape texture should be associated with larger‐bodied animals. We examined this hypothesis for birds in five landscapes in south‐eastern Australia that represented a gradient from simple to complex landscape texture. In landscapes with a complex texture, the number of detections of small birds was higher than expected, and the number of detections of larger‐bodied birds was lower than expected. The opposite pattern was found in landscapes with a simple texture. The pattern remained significant when only bird species found in each of the five landscapes were considered, which demonstrated that the association of landscape texture with body size was not an artefact of landscapes differing in their species pools. Understanding the effects of landscape texture on species distribution patterns may be a promising research frontier for conservation biogeography. We hypothesize that the active management of landscape texture may be used to attract or deter animals of certain body sizes. Consistent with other theories, the textural discontinuity hypothesis therefore suggests that managing entire landscapes, rather than only predefined patches, is an important conservation strategy.  相似文献   
103.
Previous studies demonstrated the toxic effects of cyanobacteria in Japanese quails (Coturnix coturnix japonica) in various experimental set-ups including acute, sub-chronic and reproduction toxicity, co-exposures with toxic metals and the Newcastle vaccination. This study aimed to assess the testicular toxicity of a complex cyanobacterial biomass administered to Japanese quails in the feed for eight weeks (daily dose of 61.62 μg microcystins pro toto including 26.54 μg MC-RR, 7.62 μg MC-YR and 27.39 μg MC-LR). There was no mortality in the controls or the biomass-exposed birds. However, males exposed to cyanobacteria in the feed showed moderate to marked atrophy of the seminiferous tubular epithelium with only sparse numbers of the developmental stages of spermatozoa and Sertoli cells. Biomass-exposed birds had elevated catalase activities but decreased glutathione peroxidase activities and surprisingly lower levels of lipid peroxides in the testes. The other biochemical parameters studied (i.e., glutathione level and glutathione reductase, glutathione-S-transferase and superoxide dismutase activities) showed no differences. The cell defensive system protecting testicular tissue from the damage associated with toxic effects of the complex cyanobacterial biomass seemed to be insufficient and partly depleted after the chronic exposure of male birds to this biomass.  相似文献   
104.
105.
106.
Although avian color preferences have been studied and documented in controlled experiments, they have not been demonstrated under natural conditions in most cases. We hypothesized that avian fruit choice reflects intraspecific variation in fruit characteristics other than color, rather than fruit color differences. By planting one Ilex serrata Thunb. (red form) and one I. serrata forma leucocarpa Beissner (white form), which produce red and white fruits, respectively, at each of five points, we examined the proportion of fruits removed per tree and fruit choice by three avian species based on fruit color and other fruit characteristics. The proportion of fruits removed increased with pulpy sugar concentration and fruit diameter, but it did not differ between fruit colors. The main foragers, resident brown-eared bulbuls Hypsypetes amaurotis, consumed fruits regardless of color, but correspondingly to fruit removal, and appeared to base their fruit choice on pulpy sugar concentration and fruit diameter rather than on color. In contrast, the minor foragers, migrant Daurian redstarts Phoenicurus auroreus (Pallas) and Siberian bluechats Tarsiger cyanurus (Pallas), tended to choose red fruits and were possibly attracted by them. In conclusion, fruit removal per tree reflected individual variation in fruit profitability more strongly than differences in fruit color, even though the individual variation was not remarkable. The importance of color in fruit choice differed based on species, residency status, and major/minor foragers.  相似文献   
107.
108.
Improved winter cold tolerance is widespread among small birds overwintering in cold climates and is associated with improved shivering endurance and elevated summit metabolic rate (Msum). Phenotypic flexibility resulting in elevated Msum could result from either increased skeletal muscle mass (perhaps with support from similar adjustments in “nutritional organs”) and/or cellular metabolic intensity. We investigated seasonal changes in body composition of three species of passerine birds resident in cold winter climates, all of which show large seasonal variations in Msum (>25%); white-breasted nuthatch (Sitta carolinensis), black-capped chickadee (Poecile atricapillus), and house sparrow (Passer domesticus). All three species displayed significant winter increases in pectoralis and heart masses, and supracoracoideus mass also increased in winter chickadees. Gizzard mass increased in winter for all three species, but masses of other nutritional organs did not vary consistently with season. These data suggest that winter increases in pectoralis and heart masses are important contributors to elevated thermogenic capacity and cold tolerance, but seasonal variation in nutritional organ masses, other than gizzard, which is likely associated with dietary changes, are not universally associated with seasonal phenotypes. The winter increases in pectoralis and heart masses are consistent with data from other small passerines showing marked seasonal changes in cold tolerance and support the Variable Maximum Model of seasonal phenotypic flexibility, where physiological adjustments that promote improved cold tolerance, also result in elevated Msum.  相似文献   
109.
Fever is an energetically expensive component of the mammalian immune system’s acute phase response. Like mammals, birds also develop fever when exposed to pathogens, but, as yet, the energy requirements of febrile mediation in birds are not known. We injected ducks (Anas platyrhynchos; n=8) with 100 μ kg−1 LPS or sterile isotonic saline and recorded their core body temperatures while measuring their O2 consumption and CO2 production in an open-flow respirometric circuit. Lipopolysaccharide elicited robust increases in the core body temperatures of our birds. The metabolic rate of the ducks increased about 80 min after treatment with LPS, relative to the metabolic rate of saline injected birds, and peaked 100 min later when the highest body temperatures were recorded. Our ducks increased their energy expenditure by 33.1% for about 3 h to mount a febrile response that, on average, increased their body temperature 1.4 °C. Studies with humans and rats, kept at thermoneutral temperatures, found a 10-15% increase in metabolic rate for every 1 °C increase in body temperature. The increase in metabolic rate, reported here (23%/°C), is noticeably higher and we conclude that febrile mediation is metabolically more expensive in Pekin ducks than in mammals.  相似文献   
110.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号