首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  国内免费   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1979年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
Aerobic granular sludge: recent advances   总被引:27,自引:1,他引:26  
Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.  相似文献   
12.
13.
The yeast Nob1p (Nin one binding protein) gene is required for proteasome function and RNA metabolism. We report here the cloning and characterization of the human orthologue NOB1 gene and its products. The human NOB1 gene is composed of nine exons and eight introns and is localized on human chromosome 16q22.1. The NOB1 cDNA is 1749 bp long and contains a putative open reading frame of 1239 bp. The predicted NOB1 protein comprises a PIN (PilT amino terminus) domain and a zinc ribbon domain. Western blot analysis showed that the molecular weight of NOB1 is about 50 KDa. RT-PCR analysis of mRNA from human adult tissues showed that NOB1 is expressed mainly in liver, lung and spleen. Expression of NOB1 in mammalian culture cells indicated that the NOB1 protein is mainly localized in the nucleus. Our data provides important information for further study of the function of the NOB1 gene and its products.  相似文献   
14.

Scope

Circadian clock plays a principal role in orchestrating our daily physiology and metabolism, and their perturbation can evoke metabolic diseases such as fatty liver and insulin resistance. Nobiletin (NOB) has been demonstrated to possess antitumor and neuroprotective activities. The objective of the current study is to determine potential effects of NOB on modulating the core clock gene Bmal1 regarding ameliorating glucolipid metabolic disorders.

Results

Our results revealed that NOB partially reverse the relatively shallow daily oscillations of circadian clock genes and reset phase-shifting circadian rhythms in primary hepatocytes under metabolic disorders conditions. Importantly, NOB was found to be effective at amplifying glucose uptake via stimulating IRS-1/AKT signaling pathway, as well as blunting palmitate-induced lipogenesis in HepG2 cells via modulating AMPK-Sirt1 signaling pathway and key enzymes of de novo lipogenesis in a Bmal1-dependent manner. NOB attenuated palmitate-stimulated excessive secretions of ROS, restored the depletions of mitochondrial membrane potential, which is similar to the recovery in expressions of mitochondrial respiration complex I-IV.

Conclusion

This study is the first to provide compelling evidences that NOB prevent cellular glucolipid metabolic imbalance and mitochondrial function in a Bmal1-dependent manner. Overall, NOB may serve as a nutritional preventive strategy in recovering metabolic disorders relevant to circadian clock.  相似文献   
15.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   
16.
In this work, nitrogen loss in the nitrite oxidation step of the nitrification process in an aerobic‐granule‐based reactor was characterized with both experimental and modeling approaches. Experimental results showed that soluble microbial products (SMP) were released from the nitrite‐oxidizing granules and were utilized as a carbon source by the heterotrophs for denitrification. This was verified by the fluorescence in situ hybridization (FISH) analysis. Microelectrode tests showed that oxygen diffusion limitation did result in an anoxic micro‐zone in the granules and allowed sequential utilization of nitrate as an electron acceptor for heterotrophic denitrification with SMP as a carbon source. To further elucidate the nitrogen loss mechanisms, a mathematic model was formulated to describe the growth of nitrite oxidizers, the formation and consumption of SMP, the anoxic heterotrophic growth on SMP and nitrate, as well as the oxygen transfer and the substrate diffusion in the granules. The results clearly indicate that the heterotrophs grown on the SMP released by the autotrophs are responsible for the nitrogen loss in the nitrifying granules, and give us a better understanding of the aerobic granules for nitrogen removal. Biotechnol. Bioeng. 2011;108: 2844–2852. © 2011 Wiley Periodicals, Inc.  相似文献   
17.
高盐废水来源广泛,在利用生物脱氮法处理高盐含氮废水时,盐分会对生物脱氮产生抑制作用.硝化反应是生物脱氮工艺中的关键过程,研究盐分对硝化反应的影响机理具有重要意义.本文概述了盐分对废水生物脱氮过程中硝化反应影响的研究进展,总结了盐胁迫对好氧氨氧化过程、亚硝酸盐氧化过程中硝化效率和反应特性的影响规律,并分析了盐分对硝化微生物细胞形态、生物絮体结构和胞外聚合物特性变化以及菌群结构的影响,系统阐述了盐胁迫下的硝化反应机理,为高盐分高铵氮废水生物脱氮工艺设计提供理论指导.
  相似文献   
18.
19.
硝化菌保藏特性及降解动力学研究   总被引:2,自引:0,他引:2  
投加硝化菌是有效降解水体中亚硝酸盐的方法之一,而作为商品化的硝化菌产品却非常少见。究其原因,保藏过程中的菌体衰亡速率过快是重要影响因素之一,而有关其保藏衰亡的文献几乎没有。本文通过对影响硝化菌衰亡因素及其动力学的研究,发现温度、pH和离子强度是影响其衰亡的重要因素,通过研究使得硝化菌液的衰减指数(Km)由原有的0.25降至0.013,半衰期延长至55d,为硝化菌的产业化提供了理论依据和实现方法。  相似文献   
20.
目的研究NOB1基因在食管鳞状细胞癌(Esophageal squamous cell carcinoma,ESCC)中的表达及临床意义。方法利用免疫组织化学SP法检测59例ESCC及其相应(50例)的远端正常食管黏膜组织中NOB1的表达。结果 ESCC中NOB1的阳性率为71%,正常食管黏膜鳞状上皮中的阳性率为26%,两组比较,差异有统计学意义(P〈0.05)。NOB1的表达与ESCC的分化程度及淋巴结转移相关,与患者的性别,年龄以及肿瘤浸润深度无关。结论 NOB1在ESCC中表达升高,可能在ESCC发生发展过程中起重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号