首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   41篇
  国内免费   10篇
  2023年   2篇
  2022年   7篇
  2021年   25篇
  2020年   16篇
  2019年   18篇
  2018年   10篇
  2017年   24篇
  2016年   30篇
  2015年   35篇
  2014年   47篇
  2013年   48篇
  2012年   14篇
  2011年   39篇
  2010年   49篇
  2009年   47篇
  2008年   51篇
  2007年   61篇
  2006年   55篇
  2005年   26篇
  2004年   48篇
  2003年   25篇
  2002年   29篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1973年   1篇
排序方式: 共有797条查询结果,搜索用时 0 毫秒
11.
《Phytomedicine》2014,21(5):670-675
The Cecropia genus is widely distributed in Latin America including at least 60 species, and some of them are commonly used in traditional medicine for the treatment of several diseases. We used Cecropia pachystachya Trécul to search for quorum sensing (QS) inhibitors compounds and found that the aqueous extract of C. pachystachya leaves is a promising source of substances with this activity. Using as biosensor Chromobacterium violaceum ATCC 31532 and Escherichia coli pSB403, the compounds chlorogenic acid (2), isoorientin (3), orientin (4), isovitexin (6), vitexin (7), and rutin (9) were identified as QS inhibitors. None of these compounds inhibited the growth of neither the used biosensors nor the microorganisms Staphylococcus aureus ATCC 23591, Escherichia coli ATCC 25922 and Saccharomyces cerevisiae, used here as growth inhibition controls. Along with the rutin, here we presented for the first time the QS-inhibition potential of the C-glycosyl flavonoids. The prospective of this evidence lead to the use of these compounds as antipathogenic drugs or antifoulants.  相似文献   
12.
The order Brassicales, sensu APG III, belongs to Eurosids, and comprises 17 families and 398 genera. The present work discusses the chemical features of Brassicales through the micromolecular chemical data of its taxa and selected taxonomic markers to assess pertinent affinities between its families by correlating their chemosystematic parameters. Although the chemical data of all families were obtained, the data of Brassicaceae, Capparaceae, and Cleomaceae were the most studied. The chemistry of the Brassicales species is diverse, but it reveals the chemical affinity of its families due to occurrence of flavonoids (35%) and glucosinolates (25%), which were characterized as good chemical markers. The flavonoids consist primarily of flavones and flavonols, presenting a low flavone/flavonol ratio. These micromolecules commonly contain unprotected hydroxyls, which are mainly protected by glucosilation, revealing the basal features of its taxa. In Brassicales, the predominantly allyl glucosinolates are usually found in Brassicaceae, Capparaceae, and Cleomaceae families. In the present study, the results of the chemosystematic analysis confirmed the affinity among the Brassicaceae, Capparaceae, and Cleomaceae families, and supported the concept of their monophyly in the Brassicales order. However, more chemical data of the other families is required to improve the chemosystematic conclusions.  相似文献   
13.
14.
15.
Some dithiocarbamic esters bearing a flavanone backbone, as well as their corresponding 1,3-dithiolium salts were tested against Staphylococcus aureus and Escherichia coli. The 1,3-dithiolium tricyclic flavonoids display good inhibitory properties against both Gram-positive and Gram-negative pathogens.  相似文献   
16.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   
17.
18.
The resistance of pathogenic fungi and failure of drug therapy increased dramatically. Numerous studies have reported the individual or synergistic antifungal potency of natural and synthesized flavonoids, especially against drug-resistant fungi. This brief review summarizes the structure and individual or synergistic antifungal activity of natural and synthesized flavonoids (literatures mainly cover the past 10 years 2009–2019), with a special focus on the antifungal spectra, structure–activity relationship and mechanisms of actions. These may contribute to a better understanding of flavonoids as multi-target agents in the treatment of mycoses and provide some ideas on the development of novel flavonoids-based antifungals.  相似文献   
19.
20.
Four new cycloartane triterpenes, named huangqiyegenins V and VI and huangqiyenins K and L ( 1 – 4 , resp.), together with nine known triterpenoids, 5 – 13 , and eight flavonoids, 14 – 21 , were isolated from a 70%‐EtOH extract of Astragalus membranaceus leaves. The structures of the new compounds were elucidated by detailed spectroscopic analyses, and the compounds were identified as (9β,11α,16β,20R,24S)‐11,16,25‐trihydroxy‐20,24‐epoxy‐9,19‐cyclolanostane‐3,6‐dione ( 1 ), (9β,16β,24S)‐16,24,25‐trihydroxy‐9,19‐cyclolanostane‐3,6‐dione ( 2 ), (3β,6α,9β,16β,20R,24R)‐16,25‐dihydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐20,24‐epoxy‐9,19‐cyclolanostan‐6‐yl acetate ( 3 ), and (3β,6α,9β,16β,24E)‐26‐(β‐D ‐glucopyranosyloxy)‐16‐hydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐9,19‐cyclolanost‐24‐en‐6‐yl acetate ( 4 ). All isolated compounds were evaluated for their inhibitory activities against LPS‐induced NO production in RAW264.7 macrophage cells. Compounds 1 – 3, 14, 15 , and 18 exhibited strong inhibition on LPS‐induced NO release by macrophages with IC50 values of 14.4–27.1 μM .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号