首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   24篇
  2023年   5篇
  2022年   3篇
  2021年   14篇
  2020年   30篇
  2019年   36篇
  2018年   18篇
  2017年   10篇
  2016年   7篇
  2015年   25篇
  2014年   17篇
  2013年   17篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1968年   1篇
排序方式: 共有276条查询结果,搜索用时 187 毫秒
11.
Rational embellishment of self-assembling two-dimensional (2D) proteins make it possible to build 3D nanomaterials with novel catalytic, optoelectronic and mechanical properties. However, introducing multiple sites of embellishment into 2D protein arrays without affecting the self-assembly is challenging, limiting the ability to program in additional functionality and new 3D configurations. Here we introduce two orthogonal covalent linkages at multiple sites in a 2D crystalline-forming protein without affecting its self-assembly. We first engineered the surface-layer protein SbsB from Geobacillus stearothermophilus pV72/p2 to display isopeptide bond-forming protein conjugation pairs, SpyTag or SnoopTag, at four positions spaced 5.7-10.5 nm apart laterally and 3 nm axially. The C-terminal and two newly-identified locations within SbsB monomer accommodated the short SpyTag or SnoopTag peptide tags without affecting the 2D lattice structure. Introducing tags at distinct locations enabled orthogonal and covalent binding of SpyCatcher- or SnoopCatcher-protein fusions to micron-sized 2D nanosheets. By introducing different types of bifunctional cross-linkers, the dual-functionalized nanosheets were programmed to self-assemble into different 3D stacks, all of which retain their nanoscale order. Thus, our work creates a modular protein platform that is easy to program to create dual-functionalized 2D and lamellar 3D nanomaterials with new catalytic, optoelectronic, and mechanical properties.  相似文献   
12.
Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 104 LD50. The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections.  相似文献   
13.
Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24‐h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light‐saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process‐based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.  相似文献   
14.
Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.  相似文献   
15.
16.
Evading immune destruction is a hallmark of cancer. Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid immune cells, are thought to foster the establishment of an immunosuppressive tumor microenvironment, but it remains unclear how. This study aims to determine the levels of circulating MDSCs and their subpopulations and test their immunosuppressive functions in patients with breast cancer (BC). We analyzed the fractions of MDSCs in freshly isolated peripheral blood mononuclear cells of patients with BC and healthy donors using flow cytometry. Circulating MDSCs were further phenotyped using fluorescently labeled antihuman monoclonal antibodies. Coculture experiments revealed the effects of MDSCs on CD3+ T cell response. Moreover, we correlated circulating MDSC levels with clinicopathological features of patients with BC. We show that the fraction of HLA-DR CD33 + MDSCs in peripheral blood is about 10-fold higher in patients with BC than in healthy control individuals. The levels of all MDSC subpopulations, including monocytic and granulocytic MDSCs, are significantly elevated. Coculture experiments of purified HLA-DR CD33 + MDSCs and CD3 + T cells demonstrate that T cell proliferation is more effectively inhibited by BC patient-derived MDSCs than by healthy control MDSCs. Moreover, increased circulating MDSC levels robustly associate with advanced BC stage and positive lymph node status. By being more abundant and more effective T cell suppressors, BC patient-derived circulating MDSCs exert a dual immunosuppressive effect. Our findings pave the way to develop novel diagnostic and immunotherapeutic strategies, aimed at detecting and inhibiting MDSCs in patients with BC.  相似文献   
17.
18.
19.
Dimethyl fumarate (DMF) is an important oral treatment option for various autoimmune diseases, such as multiple sclerosis (MS) and psoriasis. DMF and its dynamic metabolite, monomethyl fumarate (MMF) are the major compounds that exert therapeutic effects on several pathologic conditions in part, through downregulation of immune responses. The exact mechanism of DMF is yet to be fully understood even though its beneficial effects on the immune system are extensively studied. It has been shown that DMF/MMF can affect various immune cells, which can get involved in both the naive and adaptive immune systems, such as T cells, B cells, dendritic cells, macrophages, neutrophils, and natural killer cells. It is suggested that DMF/MMF may exert their effect on immune cells through inhibition of nuclear factor-κB translocation, upregulation of nuclear factor erythroid-derived 2(E2)-related factor antioxidant pathway, and activation of hydroxyl carboxylic acid receptor 2. In this review, the mechanisms underlying the modulatory functions of DMF or MMF on the main immune cell populations involved in the immunopathogenesis of MS are discussed.  相似文献   
20.
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号