首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In low-phosphorus (P) marine systems, phytoplankton replace membrane phospholipids with non-phosphorus lipids, but it is not known how rapidly this substitution occurs. Here, when cells of the model diatom Thalassiosira pseudonana were transferred from P-replete medium to P-free medium, the phospholipid content of the cells rapidly declined within 48 h from 45±0.9 to 21±4.5% of the total membrane lipids; the difference was made up by non-phosphorus lipids. Conversely, when P-limited T. pseudonana were resupplied with P, cells reduced the percentage of their total membrane lipids contributed by a non-phosphorus lipid from 43±1.5 to 7.3±0.9% within 24 h, whereas the contribution by phospholipids rose from 2.2±0.1 to 44±3%. This dynamic phospholipid reservoir contained sufficient P to synthesize multiple haploid genomes, suggesting that phospholipid turnover could be an important P source for cells. Field observations of phytoplankton lipid content may thus reflect short-term changes in P supply and cellular physiology, rather than simply long-term adjustment to the environment.  相似文献   

2.
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.

ESI–MS and matrix-assisted laser desorption ionization–mass spectrometry imaging reveal alterations in Medicago truncatula nodules membrane lipid composition and spatial distribution in phosphorus deficiency.  相似文献   

3.
Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.

Nonspecific phospholipase C4 (NPC4), which is induced by phosphate deficiency, hydrolyzes the common phosphosphingolipid glycosylinositolphosphorylceramide and mediates sphingolipid remodeling that supports root growth in Arabidopsis response to phosphate deficiency.  相似文献   

4.
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non‐phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid‐to‐galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum‐localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2‐overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.  相似文献   

5.
6.
7.
8.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

9.
Phosphorus is a vital nutrient for living organisms and is obtained by bacteria primarily via phosphate uptake. However, phosphate is often scarcely accessible in nature, and there is evidence that in many areas of the ocean, its concentration limits bacterial growth. Surprisingly, the phosphate starvation response has been extensively investigated in different model organisms (e.g., Escherichia coli), but there is a dearth of studies on heterotrophic marine bacteria. In this work, we describe the response of Pseudovibrio sp. strain FO-BEG1, a metabolically versatile alphaproteobacterium and potential symbiont of marine sponges, to phosphate limitation. We compared the physiology, protein expression, and secondary metabolite production under phosphate-limited conditions to those under phosphate surplus conditions. We observed that phosphate limitation had a pleiotropic effect on the physiology of the strain, triggering cell elongation, the accumulation of polyhydroxyalkanoate, the degradation of polyphosphate, and the exchange of membrane lipids in favor of phosphorus-free lipids such as sulfoquinovosyl diacylglycerols. Many proteins involved in the uptake and degradation of phospho-organic compounds were upregulated, together with subunits of the ABC transport system for phosphate. Under conditions of phosphate limitation, FO-BEG1 secreted compounds into the medium that conferred an intense yellow coloration to the cultures. Among these compounds, we identified the potent antibiotic tropodithietic acid. Finally, toxin-like proteins and other proteins likely involved in the interaction with the eukaryotic host were also upregulated. Altogether, our data suggest that phosphate limitation leads to a pronounced reorganization of FO-BEG1 physiology, involving phosphorus, carbon, and sulfur metabolism; cell morphology; secondary metabolite production; and the expression of virulence-related genes.  相似文献   

10.
The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L−1 of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.  相似文献   

11.
Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature.  相似文献   

12.
Outer membrane (OM) fractions were isolated from marine bacteria of the genus Pseudoalteromonas (P. haloplanktis, P. tetraodonis, and Pseudoalteromonas sp. KMM 223). The purity of OM fractions was confirmed by ultracentrifugation in a sucrose gradient. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the bilayer lipid membrane (BLM) technique, heat-modifiable porin-like proteins were identified among the OM proteins of marine pseudomonads. The pore-forming P-1 and P-2 proteins with molecular masses of 43 and 39 kDa, respectively, were obtained from the marine bacterium P. haloplanktis. The nature of current fluctuations in the BLM and the conductivity of pores formed by these proteins suggest that these isolated porins are not identical in their functional properties. A nonlinear dependence of channel conductivity on salt concentration in the aqueous phase was found for the P-2 protein, which is typical of marine bacterial porins.  相似文献   

13.
Anammox bacteria possess unique membranes that are mainly comprised of phospholipids with extraordinary “ladderane” hydrocarbon chains containing 3 to 5 linearly concatenated cyclobutane moieties that have been postulated to form relatively impermeable membranes. In a previous study, we demonstrated that purified ladderane phospholipids form fluid-like mono- and bilayers that are tightly packed and relatively rigid. Here we studied the impact of temperature and the presence of bacteriohopanoids on the lipid density and acyl chain ordering in anammox membranes using Langmuir monolayer and fluorescence depolarization experiments on total lipid extracts. We showed that anammox membrane lipids of representatives of Candidatus “Kuenenia stuttgartiensis”, Candidatus “Brocadia fulgida” and Candidatus “Scalindua” were closely packed and formed membranes with a relatively high acyl chain ordering at the temperatures at which the cells were grown. Our findings suggest that bacteriohopanoids might play a role in maintaining the membrane fluidity in anammox cells.  相似文献   

14.
Solid-state nuclear magnetic resonance (NMR) is a useful tool to probe the organization and dynamics of phospholipids in bilayers. The interactions of molecules with membranes are usually studied with model systems; however, the complex composition of biological membranes motivates such investigations on intact cells. We have thus developed a protocol to deuterate membrane phospholipids in Escherichia coli without mutating to facilitate 2H solid-state NMR studies on intact bacteria. By exploiting the natural lipid biosynthesis pathway and using perdeuterated palmitic acid, our results show that 76% deuteration of the phospholipid fatty acid chains was attained. To verify the responsiveness of these membrane-deuterated E. coli, the effect of known antimicrobial agents was studied. 2H solid-state NMR spectra combined to spectral moment analysis support the insertion of the antibiotic polymyxin B lipid tail in the bacterial membrane. The use of membrane-deuterated bacteria was shown to be important in cases where antibiotic action of molecules relies on the interaction with lipopolysaccharides. This is the case of fullerenol nanoparticles which showed a different effect on intact cells when compared to dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol membranes. Our results also suggest that membrane rigidification could play a role in the biocide activity of the detergent cetyltrimethyammonium chloride. Finally, the deuterated E. coli were used to verify the potential antibacterial effect of a marennine-like pigment produced by marine microalgae. We were able to detect a different perturbation of the bacteria membranes by intra- and extracellular forms of the pigment, thus providing valuable information on their action mechanism and suggesting structural differences.  相似文献   

15.
Vibrio splendidus is a marine bacterium often considered as a threat in aquaculture hatcheries where it is responsible for mass mortality events, notably of bivalves' larvae. This bacterium is highly adapted to dynamic salty ecosystems where it has become an opportunistic and resistant species. To characterize their membranes as a first and necessary step toward studying bacterial interactions with diverse molecules, we established a labelling protocol for in vivo 2H solid-state nuclear magnetic resonance (SS-NMR) analysis of V. splendidus. 2H SS-NMR is a useful tool to study the organization and dynamics of phospholipids at the molecular level, and its application to intact bacteria is further advantageous as it allows probing acyl chains in their natural environment and study membrane interactions. In this study, we showed that V. splendidus can be labelled using deuterated palmitic acid, and demonstrated the importance of surfactant choice in the labelling protocol. Moreover, we assessed the impact of lipid deuteration on the general fitness of the bacteria, as well as the saturated-to-unsaturated fatty acid chains ratio and its impact on the membrane properties. We further characterize the evolution of V. splendidus membrane fluidity during different growth stages and relate it to fatty acid chain composition. Our results show larger membrane fluidity during the stationary growth phase compared to the exponential growth phase under labelling conditions - an information to take into account for future in vivo SS-NMR studies. Our lipid deuteration protocol optimized for V. splendidus is likely applicable other microorganisms for in vivo NMR studies.  相似文献   

16.
Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6 × 106 cells ml−1, but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator−1 h−1, respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3–8.3 cells predator−1 h−1 and 0.012–0.033 d−1, respectively. Marine cryptophytes, including T. amphioxeia, are known to be favorite prey species for many mixotrophic and heterotrophic dinoflagellates and ciliates. Cryptophytes, therefore, likely play important roles in marine food webs and may exert a considerable potential grazing impact on the populations of marine bacteria.  相似文献   

17.
18.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   

19.
Schizochytrium limacinum SR21, a thraustochytrid (Labyrinturomycota), is a heterotrophic marine microorganism. SR21 has attracted recent attention because of the production of docosahexaenoic acid (DHA). We obtained highly concentrated SR21 zoospores and successfully observed synchronous growth. We investigated changes of lipid content and fatty acid composition during the growth. The morphological features of the lipid bodies were also described via fluorescent and electron microscopy. The cells developed quickly after zoospore settlement. Lipid bodies developed in accordance with an increase in lipid content during the 8-h synchronous growth. The total lipid was composed mainly of triacylglycerol, sterol esters, and phosphatidylcholine. The proportion of neutral lipids (triacylglycerol and sterol esters) in the total lipid was fairly constant during growth. The fatty acid composition of neutral lipids, primary components of the lipid body, and phospholipids, primary components of the cell membranes, was nearly unchanged during the synchronous growth. However, the DHA content of the phospholipids decreased drastically after a 10-day culture. Electron micrographs prepared using a high-pressure freeze substitution technique revealed a fine structure of light- and dark-staining bands inside the lipid bodies in many stages of the cells.  相似文献   

20.
The extractable lipid composition of Mesorhizobium ciceri strain HAMBI 1750 grown in a phosphate sufficient medium (79CA) is reported. Cardiolipin (CL—27% of total lipids), phosphatidylglycerol (PG—18%), phosphatidylethanolamine (PE—1%), phosphatidylcholine (PC—30%) and two methylated derivatives of PE, i.e. phosphatidyl-N, N-dimethylethanolamine (DMPE—1%) and phosphatidyl-N-monomethylethanolamine (MMPE—1%), were found to make up the phospholipids of the analysed bacteria. Nonphosphorus, ornithine-containing lipid (OL—10%) was also detected. Polar groups of phospholipids were predominantly acylated with cis-11,12-methyleneoctadecanoyl (lactobacillic) residues, whereas the ornithine lipid contained mainly 3-hexadecanoyloxy-11,12-methyleneoctadecanoic acid bound to the α-amino group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号