首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1150篇
  免费   57篇
  国内免费   63篇
  2024年   2篇
  2023年   11篇
  2022年   4篇
  2021年   14篇
  2020年   20篇
  2019年   18篇
  2018年   26篇
  2017年   20篇
  2016年   22篇
  2015年   26篇
  2014年   68篇
  2013年   65篇
  2012年   61篇
  2011年   68篇
  2010年   38篇
  2009年   57篇
  2008年   53篇
  2007年   59篇
  2006年   63篇
  2005年   47篇
  2004年   40篇
  2003年   31篇
  2002年   52篇
  2001年   38篇
  2000年   36篇
  1999年   30篇
  1998年   30篇
  1997年   35篇
  1996年   34篇
  1995年   29篇
  1994年   14篇
  1993年   14篇
  1992年   21篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   14篇
  1987年   12篇
  1986年   9篇
  1985年   15篇
  1984年   7篇
  1983年   3篇
  1982年   11篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有1270条查询结果,搜索用时 109 毫秒
11.
We found that appropriate treatment with a highly potent and long-lasting abscisic acid analog enhanced the tissue expansion of scutellum during early seedling development of rice, accompanied by increases of protein and starch accumulation in the tissue. A comparative display of the protein expression patterns in the abscisic acid analog-treated and non-treated tissues on two dimensional gel electrophoretogram indicated that approximately 30% of the scutellar proteins were induced by abscisic acid. The abscisic acid-induced proteins included sucrose metabolizing, glycolytic, and ATP-producing enzymes. Most of these enzyme proteins also increased during the seedling growth. In addition, the expression of some isoforms of UDP-glucose pyrophosphorylase, 3-phosphoglycerate kinase, and mitochondrial ATP synthase beta chain was stimulated in the scutellum, with suppressed expression of α-amylase. We concluded that abscisic acid directly and indirectly stimulates the expression of numerous proteins, including carbohydrate metabolic enzymes, in scutellar tissues.  相似文献   
12.
In barley seedlings (Hordeum vulgare L.) during two days after irradiation of shoots with UV-B (0.5 W/m2, 6 h), the rate of elongation of primary roots decreased 2–3 times compared to that in control plants. The modulus of elasticity of roots (ε) increased at most twofold in 12 h after the onset of irradiation; the hydraulic conductivity (L p) diminished by a factor of two in 12 h, and the root osmotic pressure gradually decreased by 0.08 MPa in 24 h. Changes in ε and L p were shown to be related to oxidative stress in growing roots, which was evidenced from the increase in H2O2 level up to 15-fold increase in 6 h and in activity of guaiacol peroxidase (3.5-fold in 12 h). After 48 h, the characteristics of oxidative metabolism and root characteristics ε and L p became identical in untreated and treated plants. On the third day, the rate of root growth in treated plants reached its initial value. It is concluded that the main causes of retardation of root growth under these conditions were as follows: the increase in cell wall rigidity related to formation of oxidative cross-links in the apoplast and the decrease in root osmotic pressure due to limited transport of assimilates from irradiated leaves. After the intensity of UV-B irradiation applied to shoots was enhanced (1.6 W/m2, 4 h), another physiological status of roots was observed on the 2nd day characterized by twofold increase in L p, tenfold decreased root elongation rate, and by a progressing increase of root diameter in growing roots. The comparison of root responses induced by irradiation of shoots with the root responses to sodium salicylate and ABA suggests that both agents might participate in the transmission of signals from irradiated leaves to roots.  相似文献   
13.
Plant growth-promoting rhizobacteria are commonly found in the rhizosphere (adjacent to the root surface) and may promote plant growth via several diverse mechanisms, including the production or degradation of the major groups of plant hormones that regulate plant growth and development. Although rhizobacterial production of plant hormones seems relatively widespread (as judged from physico-chemical measurements of hormones in bacterial culture media), evidence continues to accumulate, particularly from seedlings grown under gnotobiotic conditions, that rhizobacteria can modify plant hormone status. Since many rhizobacteria can impact on more than one hormone group, bacterial mutants in hormone production/degradation and plant mutants in hormone sensitivity have been useful to establish the importance of particular signalling pathways. Although plant roots exude many potential substrates for rhizobacterial growth, including plant hormones or their precursors, limited progress has been made in determining whether root hormone efflux can select for particular rhizobacterial traits. Rhizobacterial mediation of plant hormone status not only has local effects on root elongation and architecture, thus mediating water and nutrient capture, but can also affect plant root-to-shoot hormonal signalling that regulates leaf growth and gas exchange. Renewed emphasis on providing sufficient food for a growing world population, while minimising environmental impacts of agriculture because of overuse of fertilisers and irrigation water, will stimulate the commercialisation of rhizobacterial inoculants (including those that alter plant hormone status) to sustain crop growth and yield. Combining rhizobacterial traits (or species) that impact on plant hormone status thereby modifying root architecture (to capture existing soil resources) with traits that make additional resources available (e.g. nitrogen fixation, phosphate solubilisation) may enhance the sustainability of agriculture.  相似文献   
14.
Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development.  相似文献   
15.
16.
Expansion of gene families facilitates robustness and evolvability of biological processes but impedes functional genetic dissection of signalling pathways. To address this, quantitative analysis of single cell responses can help characterize the redundancy within gene families. We developed high‐throughput quantitative imaging of stomatal closure, a response of plant guard cells, and performed a reverse genetic screen in a group of Arabidopsis mutants to five stimuli. Focussing on the intersection between guard cell signalling and the endomembrane system, we identified eight clusters based on the mutant stomatal responses. Mutants generally affected in stomatal closure were mostly in genes encoding SNARE and SCAMP membrane regulators. By contrast, mutants in RAB5 GTPase genes played specific roles in stomatal closure to microbial but not drought stress. Together with timed quantitative imaging of endosomes revealing sequential patterns in FLS2 trafficking, our imaging pipeline can resolve non‐redundant functions of the RAB5 GTPase gene family. Finally, we provide a valuable image‐based tool to dissect guard cell responses and outline a genetic framework of stomatal closure.   相似文献   
17.
18.
Nitric oxide (NO) plays important roles in plant development, and biotic and abiotic stress responses. In a recent study, we showed that endogenous NO negatively regulates abscisic acid (ABA) signaling in guard cells by inhibiting sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6)/open stomata 1(OST1) through S-nitrosylation. Application of NO breaks seed dormancy and alleviates the inhibitory effect of ABA on seed germination and early seedling growth, but it is unclear how NO functions at the stages of seed germination and early seedling development. Here, we show that like SnRK2.6, SnRK2.2 can be inactivated by S-nitrosoglutathione (GSNO) treatment through S-nitrosylation. SnRK2.2 and the closely related SnRK2.3 are known to play redundant roles in ABA inhibition of seed germination in Arabidopsis. We found that treatment with the NO donor SNP phenocopies the snrk2.2snrk2.3 double mutant in conferring ABA insensitivity at the stages of seed germination and early seedling growth. Our results suggest that NO negatively regulates ABA signaling in germination and early seedling growth through S-nitrosylation of SnRK2.2 and SnRK2.3.  相似文献   
19.
Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [3H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [3H]ABA and [35S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone.  相似文献   
20.
Under drought conditions, leaf photosynthesis is limited by the supply of CO2. Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L] using an ABA‐deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL) because leaf hydraulics may be related to gm. Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose‐dependent manner. ΨL in WT was decreased by the drought treatment to ?0.7 MPa, whereas ΨL in aba1 was around ?0.8 MPa even under the well‐watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号