首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   110篇
  国内免费   33篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   30篇
  2020年   30篇
  2019年   22篇
  2018年   37篇
  2017年   20篇
  2016年   32篇
  2015年   30篇
  2014年   25篇
  2013年   48篇
  2012年   23篇
  2011年   31篇
  2010年   15篇
  2009年   49篇
  2008年   41篇
  2007年   48篇
  2006年   49篇
  2005年   36篇
  2004年   25篇
  2003年   50篇
  2002年   32篇
  2001年   22篇
  2000年   41篇
  1999年   38篇
  1998年   30篇
  1997年   27篇
  1996年   31篇
  1995年   32篇
  1994年   31篇
  1993年   26篇
  1992年   17篇
  1991年   20篇
  1990年   17篇
  1989年   12篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1120条查询结果,搜索用时 31 毫秒
11.
The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots.  相似文献   
12.
Our recent spin trapping studies of free radical generation by ultrasound in aqueous solutions are reviewed. The very high temperatures and pressures induced by acoustic cavitation in collapsing gas bubbles in aqueous solutions exposed to ultrasound lead to the thermal dissociation of water vapor into H atoms and OH radicals. Their formation has been confirmed by spin trapping. Sonochemical reactions occur in the gas phase (pyrolysis reactions), in the gas-liquid interfacial region, and in the bulk of the solution (radiation-chemistry reactions). The high temperature gradients in the interfacial regions lead to pyrolysis products from non-volatile solutes present at sufficiently high concentrations. The sonochemically generated radicals from carboxylic acids, amino acids, dipeptides. sugars, pyrimidine bases. nucleosides and nucleo-tides were identified by spin trapping with the non-volatile spin trap 3.5-dibromo-2.6-dideuterio-4-nitrosobenzenesulfonate. At low concentrations of the non-volatile solutes. the spin-trapped radicals produced by sonolysis are due to H atom and OH radical reactions. At higher concentrations of these non-volatile solutes, sonolysis leads to the formation of additional radicals due to pyrolysis processes (typically methyl radicals). A preferred localization of non-volatile surfactants (compared to analogous non-surfactant solutes) was demonstrated by the detection of pyrolysis radicals at 500-fold lower concentrations. Pyrolysis radicals were also found in the sonolysis of aqueous solutions containing only certain nitrone spin traps. The more hydrophobic the spin trap, the lower the concentration at which the pyrolysis radicals can be observed. The effect of varying the temperature of collapsing transient cavities in aqueous solutions of different rare gases and of N2O on radical yields and on cell lysis of mammalian cells was investigated.  相似文献   
13.
14.
The interrelationships between the induction of CAM and the turnover of malate and citrate in the dicotyledenous tree Clusia minor were compared with seasonal changes in rainfall, leaf water status, PFD and photoinhibitory responses during the transition from wet to dry season in Trinidad. Over a period of 8 weeks, as rainfall declined from a maximum observed around week 3, leaf xylem tensions measured at dusk and dawn reflected the concurrent reduction in day-time carbon gain and an increase in the diel turnover of malate (exposed leaves) and citrate (shaded leaves). Clear seasonal trends were observed in the turnover of malate and citrate during the transition from wet to dry season. In contrast to the declining back-ground concentrations of citrate during the wet-dry season transition, malate accumulation was markedly enhanced and the ratio of malalc:citrate accumulated overnight increased as the dry season advanced. Photo-inhibitory responses, assessed by chlorophyll fluorescence, indicated that photochemistry was largely determined by the diurnal course of PFD incident on leaves, regardless of the magnitude of internal CO2 release from malate and citrate decarboxylation. In the long term, photochemical efficiency in both shaded and exposed leaves appeared to decline as the dry season progressed. Although there was a clear linear relationship between integrated PFD and overnight accumulation of malate, no such correlation was found for citrate. However, citrate breakdown during the day showed a much closer correlation with PFD as compared to malate, with levels of citrate measured at dusk declining in response to higher daily light intensities. Moreover, enhanced citrate decarboxylation during the day was strongly correlated with increased CAM and overnight accumulation of both malate and citrate.  相似文献   
15.
Trinexapacethyl (TriEt), an acylcyclohexanedionetype inhibitor of gibberellin (GA) biosynthesis, was applied to 3-year-old Eucalyptus globules saplings by localised injection near the base of each stem. The objective was to alter cambial region GA levels and to study the effects on secondary xylem fibre development. Seven weeks later wood samples, with bark and cambial region intact, were removed 10 and 30 cm above the point of injection. Fusiform cambial cell dimensions were compared with those of fibre-tracheids in the most recently formed 100 um of secondary xylem. Increasing TriEt applications from 5 to 5 000 mg active ingredient significantly reduced average fibre length, and to a lesser extent average fusiform cambial cell length. Also reduced was the number of cells in the cambial zone and the number of differentiating fibres with primary walls. However, no trends were evident for changes in fibre diameter, the proportion of vessel elements or the ratio of cambial ray cells to fusiform cambial cells. Two gibberellins (GA1 and GA20), indole-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in cambial region tissues by gas chromatographymass spectrometry using stable isotope labelled internal standards. Increasing TriEt application reduced both GA1 and GA20 levels. Effects on IAA and ABA were not significant, although their levels tended to be lower at the highest TriEt application rate. The elongation of secondary xylem fibres was positively correlated with higher levels of endogenous GA1 (rs= 0.74, P < 0.01) and GA20 (rs= 0.72, P < 0.01). These results support a causal role for GA1 in cambial cell division. They are also consistent with the hypothesis that the elongation of differentiating secondary xylem fibres in woody an–giosperms is dependent on GA1 levels in the cambial region.  相似文献   
16.
Variations in the inorganic and organic composition of xylem exudate, growth and N content under contrasting forms of N supply in three cucumber cultivars (Hyclos, Medusa and Victory) were studied in glasshouse conditions. The plants were grown hydroponically with two NO3 -:NH4 + ratios (100:0 and 60:40).The xylem sap of Medusa grown with both N sources displayed an increase of organic N and carboxylate concentrations and a decrease of cations, inorganic anions and carbohydrates compared with that of those grown with NO3 - alone, showing a higher growth and N content in tissues and thus better utilization of N supplied as NO3 - and NH4 +. Mixed N nutrition in Hyclos caused the greatest amounts of NO3 - and NH4 + in xylem sap, lower root weight and N levels in the leaves, while its root was unable to generate an adequate supply of organic N compounds. Despite the levels of cations, inorganic and organic anions were reduced by the NH4 + supplied to Victory, the ionic balance in the xylem sap, growth and N content remained similar to that of those supplied with NO3 - alone. Finally, the cucumber cultivars studied here, responded differently to the form of N supplied, it may partly be due to their ability of assimilating N in the roots and partly to the form in which the N is translocated to the shoot.  相似文献   
17.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
18.
The diurnal water budget of developing grape (Vitis vinifera L.) berries was evaluated before and after the onset of fruit ripening (veraison). The diameter of individual berries of potted ‘Zinfandel’ and ‘Cabernet Sauvignon’ grapevines was measured continuously with electronic displacement transducers over 24 h periods under controlled environmental conditions, and leaf water status was determined by the pressure chamber technique. For well-watered vines, daytime contraction was much less during ripening (after veraison) than before ripening. Daytime contraction was reduced by restricting berry or shoot transpiration, with the larger effect being shoot transpiration pre-veraison and berry transpiration post-veraison. The contributions of the pedicel xylem and phloem as well as berry transpiration to the net diurnal water budget of the fruit were estimated by eliminating phloem or phloem and xylem pathways. Berry transpiration was significant and comprised the bulk of water outflow for the berry both before and after veraison. A nearly exclusive role for the xylem in water transport into the berry was evident during pre-veraison development, but the phloem was clearly dominant in the post-veraison water budget. Daytime contraction was very sensitive to plant water status before veraison but was remarkably insensitive to changes in plant water status after veraison. This transition is attributed to an increased phloem inflow and a partial discontinuity in berry xylem during ripening.  相似文献   
19.
伯乐树茎次生木质部结构的研究   总被引:7,自引:0,他引:7  
利用光镜和扫描电镜对伯乐树(Bretschneidera sinensisHem sl.)茎次生木质部的结构进行了研究。其主要特征为:(1)散孔材,有较明显的生长轮;(2)导管分子多为单穿孔板,少数为梯形复穿孔板,具螺纹加厚;(3)管胞、纤维-管胞和韧型木纤维同时存在,后两者有的具分隔;(4)木薄壁组织以轮界分布为主;(5)木射线多为大型异形射线,属异形IIB型;(6)缺乏侵填体、树脂道及分泌细胞。对伯乐树科(Bretschneideraceae)的系统位置作了探讨。  相似文献   
20.
Diurnal variations in the concentrations of major organic compounds occurred in xylem fluid extracted from Lagerstroemia indica L. The concentration of amino acids and the N/C ratio was at a maximum and that of organic acids was at a minimum between 1230 and 2030 h. Since the concentrations of total organic nitrogen, total amino acids and most individual amino acids (but not organic acids or sugars) were also proportional to xylem tension two experiments were performed to discern whether variations in chemistry were a consequence of diurnal changes in moisture stress. In the first experiment, L. indica , exposed to variable levels of moisture stress during midday, manifested an increase in organic acids and a reduction in the N/C ratio. In the second experiment, chemical profiles of xylem fluid were collected and compared for plants exposed to a natural photoperiod, constant darkness or continuous light at noon and midnight. After 1 day amino acids increased in concentration during midday for all treatments; the variation was greatest (10-fold) for plants in constant darkness where xylem tension varied from 0.20 to 0.25 MPa. Only plants exposed to continuous light lost a diurnal rhythm after 3 days. Thus, the circadian rhythm was endogenous, terminated in continuous light and was not mediated by changes in moisture stress. Glutamine accounted for most of the diurnal variation in total amino acids, organic nitrogen and the N/C ratio in xylem fluid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号