首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11163篇
  免费   1142篇
  国内免费   2264篇
  2024年   14篇
  2023年   182篇
  2022年   219篇
  2021年   313篇
  2020年   420篇
  2019年   480篇
  2018年   479篇
  2017年   461篇
  2016年   484篇
  2015年   437篇
  2014年   498篇
  2013年   776篇
  2012年   442篇
  2011年   537篇
  2010年   403篇
  2009年   622篇
  2008年   565篇
  2007年   594篇
  2006年   597篇
  2005年   571篇
  2004年   492篇
  2003年   449篇
  2002年   434篇
  2001年   374篇
  2000年   319篇
  1999年   310篇
  1998年   259篇
  1997年   279篇
  1996年   267篇
  1995年   231篇
  1994年   210篇
  1993年   205篇
  1992年   216篇
  1991年   149篇
  1990年   169篇
  1989年   152篇
  1988年   134篇
  1987年   127篇
  1986年   96篇
  1985年   122篇
  1984年   91篇
  1983年   53篇
  1982年   113篇
  1981年   69篇
  1980年   52篇
  1979年   35篇
  1978年   22篇
  1977年   12篇
  1976年   9篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
961.
Midwood  A.J.  Boutton  T.W.  Archer  S.R.  Watts  S.E. 《Plant and Soil》1998,205(1):13-24
In savanna parklands of southern Texas, patches of grassland and discrete clusters of small trees and shrubs occur on sandy loam surface soils underlain by an argillic horizon (claypan) at 40 cm. Large trees and shrubs in groves occur on deep (2 m) sandy loam soils without an argillic horizon. 2H and 18O of rainfall, groundwater, and soil and plant water were measured to: (1) determine if coexistence in woody patches occurs via vertical stratification of soil water uptake; (2) document differences in plant water acquisition on contrasting soil types; and (3) evaluate recharge and evaporative losses of soil moisture from grassland vs. wooded landscape elements. Groundwater was isotopically similar to weighted rainfall, suggesting local recharge at this site. Linear regressions of soil water 2H on 18O yielded slopes less than the meteoric water line, indicating significant evaporative losses of soil moisture in all landscape elements. Interspecific differences in root density distribution were significant; some woody species had roots well below 1.6 m, while others had few roots below 0.8 m. 2H and 18O values of stem water from all plants in groves were lower than those of soil water in the upper 1.5 m of the profile, suggesting all species obtained their water from depths >1.5 m. Deep roots of trees and shrubs at this savanna parkland site thus appeared to have a functional significance that was not revealed by biomass or density determinations. Root densities of species in discrete clusters (claypan present) were typically greater than those of the same species in groves (claypan absent), especially in the upper 80 cm of the soil profile. Consistent with rooting profiles, 2H and 18O values of plant water indicated that trees and shrubs in discrete clusters with fine- textured subsoils obtained most of their water at depths <1.5 m. As with groves, there was no indication of water resource partitioning between species. In summary, we saw no isotopic evidence that co- occurring woody plants at this savanna parkland site were partitioning soil moisture vertically during late summer/early fall, despite marked differences in their root density distributions. This supports other lines of evidence which indicate that species interactions in tree/shrub clumps are competitive, and that species composition is therefore unstable in those landscape elements.  相似文献   
962.
Proper management of water and fertilizer placement in irrigated corn (Zea mays L.) has the potential to reduce nitrate leaching into the groundwater. Potential management practices tested in a two year field experiment included row or furrow fertilizer placement combined with every or alternate furrow irrigation. To understand how fertilizer availability to plants could be affected by these management practices, root growth and distribution in a Ulm clay loam soil were examined. Spring rains were greater than normal in both years providing adequate moisture for early root growth in both irrigated and non-irrigated furrows. As the non-irrigated furrow began to dry, root biomass increased as much as 126% compared with the irrigated furrow. The greatest increase was at lower depths, however, where moisture was still plentiful. When early season moisture was available, roots proliferated throughout the soil profile and quickly became available to take up fertilizer N in both irrigated and non-irrigated furrows. Root growth responded positively to fertilizer placement in the furrow in 1996 but not in 1995. Excessive N leaching in 1995 may have limited the response to fertilizer N.  相似文献   
963.
964.
Stomatal conductance ( g s) and photosynthetic rate ( A ) were measured in young beech ( Fagus sylvatica ), chestnut ( Castanea sativa ) and oak ( Quercus robur ) growing in ambient or CO2-enriched air. In oak, g s was consistently reduced in elevated CO2. However, in beech and chestnut, the stomata of trees growing in elevated CO2 failed to close normally in response to increased leaf-to-air vapour pressure deficit (LAVPD). Consequently, while g s was reduced in elevated CO2 on days with low LAVPD, on warm sunny days (with correspondingly high LAVPD) g s was unchanged or even slightly higher in elevated CO2. Furthermore, during drought, g s of beech and chestnut was unresponsive to [CO2], over a wide range of ambient LAVPD, whereas in oak g s was reduced by an average of 50% in elevated CO2. Stimulation of A by elevated CO2 in beech and chestnut was restricted to days with high irradiance, and was greatest in beech during drought. Hence, most of the additional carbon gain in elevated CO2 was made at the expense of water economy, at precisely those times (drought, high evaporative demand) when water conservation was most important. Such effects could have serious consequences for drought tolerance, growth and, ultimately, survival as atmospheric [CO2] increases.  相似文献   
965.
An experiment was conducted to determine the effect of water stress on nutritional changes in tolerant (DS-4 and Chakwal-86) and susceptible (DS-17 and Pavon) genotypes in lysimeters. The stress was imposed at different growth stages (pre-anthesis, post-anthesis, terminal drought). The biomass (dry weight) and Ca, Mg and P concentration decreased with water stress in all the wheat genotypes. However, the tolerant genotypes had less reduction than susceptible at all the treatments. Potassium increased in all wheat genotypes due to water stress and was higher in tolerant than susceptible genotypes. Sodium content was not affected by water stress.  相似文献   
966.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   
967.
Increasing life expectancy, age related reduction in adaptability and progressive severe mandibular resorption all add to the importance of any factor improving the prosthetic success. Objective : To investigate the effect of two different lingual shapes of lower dentures on patients' ability to resist lifting forces. Design : Tongue pressures on the lingual surface of complete mandibular experimental dentures were recorded from mid-line, premolar and molar transducers. Two experimental prostheses were fabricated for each subject: one conventionally contoured, the other formed by piezography. Setting : A clinical research laboratory. Subjects Five experienced complete denture wearers between age 64 and 82 years. Intervention Lifting forces were applied at the midline, left and right premolar sites in random order. Main outcome measures : Peak resistance to lifting forces and lingual pressures used during these tests. Results : Lingual pressures exerted anteriorly were dramatically higher than those on premolar and molar surfaces. Significantly higher pressures were used to resist lifting forces applied to piezographically than conventionally formed contours; correspondingly, significantly higher lifting peak forces were, on average, resisted. Conclusions : Providing a lower denture with a piezographically produced lingual surface was shown, in this preliminary study, to enhance tongue retentive ability over a conventional design. It seems reasonable to maximise retentive potential with oblique sublingual polished surfaces and minimise the adaptive demand, particularly for older patients, by using a piezographic technique which “customises” the contour and precludes over-extension.  相似文献   
968.
We evaluated bioelectrical impedance analysis (BIA) as a means of rapidly and inexpensively estimating total body water (TBW) of harbor seals ( Phoca vitulina ). Deuterium oxide dilution was used to estimate TBW in 17 adult females and 16 of their pups between birth and late lactation. Isotope dilution was also used to determine TBW in 12 adult males early and 10 of these males late in the breeding season. At the same time, resistance ( Rs ) and reactance ( Xc ) measurements were taken using a tetrapolar, impedance plethysmograph (Model 101 A, RJL Systems). Seals were sedated with diazepam prior to taking BIA measurements. Within-day duplicate Rs measurements on pups and adults, taken 2-240 min apart, differed by an average of 3.0%± 1.4% ( n = 42, CV = 102%). Movement of the seal during BIA measurements caused variability in both Rs and Xc values. BIA measurements were generally poor predictors of TBW. Rs was significantly correlated with TBW in pups only ( Rs = 0.93, P = 0.001, n = 11). Bioelectrical conductor volume (length2/ Rs ) was significantly correlated with TBW only in adult females ( Rs = 0.63, P = 0.02, n = 14). We conclude that BIA is not a reliable method of estimating TBW in wild harbor seals.  相似文献   
969.
During the early 1900s, more than 90% of the surface area of Cootes Paradise Marsh was covered with emergent vegetation; currently, less than 15% of the surface is covered with aquatic vegetation and the remainder is wind-swept, turbid, open water. The loss of emergent cover is significantly correlated with mean annual water levels that increased more than 1.5 m over the past 60 years. Species diversity and the percent cover of the submerged macrophtye community also declined dramatically after the 1940s, coincident with decreased water clarity and increased nutrients from pollution by sewage and stormwater effluent. Phosphorus levels in the marsh dropped ten-fold after the sewage plant was upgraded to a tertiary-treatment facility in 1978; however, there was no measurable improvement in water clarity, in spite of a decrease in chlorophyll concentrations. Long-term changes in the composition of the planktonic, benthic and fish communities accompanied changes in water clarity, nutrient status and macrophyte cover. Phytoplankton changed from a community dominated by diverse taxa of green algae and diatoms during the 1940s, to a less diverse community dominated by a few taxa of green and blue-green algae in the 1970s, then to a much more diverse community recently, including many taxa of green algae, diatoms and chrysophytes; however, because water turbidity continues to be high, and algae tolerant of low light levels are now very abundant. Daphnia, which were prominent during the 1940s (especially in the vegetated sites) were replaced in the 1970s by smaller zooplankton such as the cladoceran, Bosmina, and several rotifer species including Brachionus, Asplanchna and Keratella. In the recent survey conducted in 1993 and 1994, small-bodied forms still dominate the turbid open-water areas, while medium-sized cladocerans such as Moina were common near macrophyte beds. Generally, total herbivorous zooplankton biomass tended to be highest next to Typha beds and declined with increasing distance from the plants. Conversely, biomass of edible algae at these sites increased with distance from the macrophytes. Species diversity of aquatic insects declined dramatically over the past 40 years, from 57 genera (23 families and 6 orders) in 1948, to 9 genera (6 families and 3 orders) in 1978, to only 5 genera (3 families and 2 orders) in 1995. The diverse benthic community present 5 decades ago has now been replaced by a community consisting primarily of chironomid larvae, oligochaetes and other worms associated with low-oxygen environments. These successional changes illustrate the impact of natural (fluctuating water levels) and anthropogenic (deterioration in water quality) stressors on the character of the biotic communities, and reveal the complex interactions among the various trophic levels and the abiotic environment as degradation and remediation proceeded.  相似文献   
970.
Mammalian cell retention devices for stirred perfusion bioreactors   总被引:4,自引:1,他引:3  
Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the reliability of the cell retention device. Current retention systems include cross-flow membrane filters, spin-filters, inclined settlers, continuous centrifuges and ultrasonic separators. The relative merits and limitations of these technologies for cell retention and their suitability for large-scale perfusion are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号