首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10793篇
  免费   1113篇
  国内免费   2271篇
  2024年   14篇
  2023年   166篇
  2022年   199篇
  2021年   306篇
  2020年   406篇
  2019年   462篇
  2018年   465篇
  2017年   448篇
  2016年   477篇
  2015年   433篇
  2014年   484篇
  2013年   766篇
  2012年   422篇
  2011年   502篇
  2010年   390篇
  2009年   607篇
  2008年   544篇
  2007年   578篇
  2006年   568篇
  2005年   551篇
  2004年   491篇
  2003年   432篇
  2002年   429篇
  2001年   372篇
  2000年   310篇
  1999年   307篇
  1998年   254篇
  1997年   272篇
  1996年   270篇
  1995年   228篇
  1994年   207篇
  1993年   193篇
  1992年   213篇
  1991年   150篇
  1990年   171篇
  1989年   145篇
  1988年   133篇
  1987年   123篇
  1986年   101篇
  1985年   122篇
  1984年   86篇
  1983年   53篇
  1982年   113篇
  1981年   69篇
  1980年   46篇
  1979年   35篇
  1978年   21篇
  1977年   12篇
  1976年   6篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
991.
High irradiance arid environments are promising, yet understudied, areas for biofuel production. We investigated the productivity and environmental trade‐offs of growing sorghum (Sorghum bicolor) as a biofuel feedstock in the low deserts of California (CA). Using a 5.3 ha experimental field in the Imperial Valley, CA, we measured aboveground biomass production and net ecosystem exchange of CO2 and H2O via eddy covariance over three growing periods between February and November 2012. Environmental conditions were extreme, with high irradiance, vapor pressure deficit (VPD), and air temperature throughout the growing season. Air temperature peaked in August with a maximum of 45.7 °C. Sorghum produced an annual aboveground biomass yield of 43.7 Mg per hectare. Net ecosystem exchange (NEE) was highest during the summer growth period and reached a maximum of ?68 μmol CO2 m?2 s?1. Water use efficiency, or biomass water ratio (BWR), was high (4.0 g dry biomass kg?1 H2O) despite high seasonal evapotranspiration (1094 kg H2O m?2). The BWR of sorghum surpassed that of many C4 biofuel candidate crops in the United States, as well as that of alfalfa which is currently widely grown in the Imperial Valley. Sorghum also outperformed many US biofuel crops in terms of radiation use efficiency (RUE), achieving 1.5 g dry biomass MJ?1. We found no evidence of saturation of NEE at high levels of photosynthetically active radiation (PAR) (up to 2250 μmol m?2 s?1). In addition, we found no evidence that NEE was inhibited by either high VPD or air temperature during peak photosynthetic phases. The combination of high productivity, high BWR, and high RUE suggests that sorghum is well adapted to this extreme environment. The biomass production rates and efficiency metrics spanning three growing periods provide fundamental data for future Life Cycle Assessments (LCA), which are needed to assess the sustainability of this sorghum biofuel feedstock system.  相似文献   
992.
993.
Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.  相似文献   
994.
In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.  相似文献   
995.
This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.  相似文献   
996.
EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively. A major method limitation is the tendency for the filters to clog before meeting the sample volume requirement. Studies using two different, but equivalent, cartridge filter options showed that filter clogging was a problem with 10% of the samples with one of the filter types compared to 6% with the other filter type. Clogging tends to increase with turbidity, but cannot be predicted based on turbidity measurements only. From a cost standpoint one of the filter options is preferable over the other, but the water quality and experience with the water system to be sampled should be taken into consideration in making filter selections.  相似文献   
997.
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water‐in‐oil or oil‐in‐water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil‐in‐water emulsions), the imidazolium‐based IL acts as an enhancer of the lipase catalytic capacity, super‐activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1473–1480, 2015  相似文献   
998.
《植物生态学报》2015,39(11):1071
AimsOur objectives were to determine differences in fine root production, its relationships with environmental factors, and its diameter- and depth-related distribution patterns between plantations of two subtropical tree species differing in successional stages. MethodsPlantation forests of an early-successional species, Pinus massoniana, and a late-successional species, Castanopsis carlesii, in Sanming, Fujian Province, were selected. Fine root production was monitored for two years using minirhizotrons methods. At the same time, environmental factors including monthly air temperature, monthly precipitation, soil temperature, and soil water content were determined.Important findings 1) During the two years, there was significant difference in annual fine root length production between these two forests, with annual production of P. massoniana plantation nearly four times that of C. carlesii plantation. Fine root length production under both forests showed significant monthly dynamics and maximized in summer, a season when most of fine roots were born. 2) Roots of 0-0.3 mm in diameter accounted for the largest proportion of total fine root length production. Fine roots were concentrated mostly at the 0-10 cm soil depth in P. massoniana plantation, but happened mostly at the 30-40 cm soil depth in the C. carlesii plantation. 3) Partial correlation analysis suggested that, monthly fine root production of both forests was significantly correlated with both air temperature and soil temperature, while it had no significant correlation with either rainfall or soil water content. Linear regression analysis illustrated that monthly fine root production was more correlated with air temperature and soil temperature in the P. massoniana plantation than in the C. carlesii plantation. It was concluded that fine root production in the early-successional P. massoniana plantation was not only much higher in amount, but also more sensitive to temperature, than that in the late-successional C. carlesii plantation.  相似文献   
999.
灌水量和滴灌施肥方式对温室黄瓜产量和品质的影响   总被引:5,自引:0,他引:5  
以黄瓜为试验材料,研究灌水量和滴灌施肥方式对日光温室黄瓜生长、产量和品质的影响.设两个水分水平(100%ET0,W1;75%ET0,W2)和4种滴灌施肥方式处理,不同滴灌施肥方式处理按推荐施肥量(N∶P2 O5∶K2 O分别为360∶180∶540 kg·hm-2)的100%、66.6%、33.3%、0%(Z100、Z66、Z33、Z0)分8次滴灌施肥,剩余肥料一次性基施;另设不施肥处理为对照(CK).结果表明:滴灌施肥比例和水分与黄瓜的株高、叶面积、干物质量、产量和品质均呈正相关关系.W1 Z100处理的产量最高(67760 kg·hm-2);W2处理的平均水分利用效率比W1处理高9.4%,其中W2Z100处理的水分利用效率最高(47.71 kg·m-3),其产量比最高产量低3.4%却节水25%.与Z0相比,Z100的黄瓜产量和干物质量分别增加15.3%和16.8%;同时,黄瓜果实中维生素C、可溶性蛋白和可溶性糖含量增加;水分利用效率增加19.1%.W2Z100处理为温室黄瓜高产、优质、节水的最佳处理.  相似文献   
1000.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号