首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10240篇
  免费   589篇
  国内免费   410篇
  2023年   148篇
  2022年   156篇
  2021年   278篇
  2020年   285篇
  2019年   352篇
  2018年   314篇
  2017年   267篇
  2016年   238篇
  2015年   275篇
  2014年   478篇
  2013年   655篇
  2012年   320篇
  2011年   383篇
  2010年   283篇
  2009年   325篇
  2008年   363篇
  2007年   433篇
  2006年   384篇
  2005年   316篇
  2004年   283篇
  2003年   312篇
  2002年   310篇
  2001年   226篇
  2000年   217篇
  1999年   184篇
  1998年   170篇
  1997年   192篇
  1996年   178篇
  1995年   200篇
  1994年   197篇
  1993年   199篇
  1992年   216篇
  1991年   205篇
  1990年   179篇
  1989年   176篇
  1988年   190篇
  1987年   177篇
  1986年   155篇
  1985年   173篇
  1984年   150篇
  1983年   91篇
  1982年   105篇
  1981年   114篇
  1980年   81篇
  1979年   75篇
  1978年   45篇
  1977年   40篇
  1976年   56篇
  1973年   23篇
  1972年   20篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
101.
Maize (Zea mays L.) and ricebean (Vigna umbellata [Thumb.] Ohwi and Ohashi) were grown in intercrop and monoculture on Tropaqualf soils under rainfed conditions in Northern Thailand yearly from 1983 to 1986. De Wit's replacement design was used to compare intercrops and monocultures with a constant plant density equivalent to 80 000 maize or 160 000 ricebean plants ha−1. Combined nitrogen was applied at varying levels to 200 kg N ha−1. In the final two seasons the intercrop ratio of maize: ricebean was also varied. At the time of maize maturity intercrops yielded upt 49 kg ha−1 more N in the above ground plant parts than the best monoculture. Dry matter, grain and nitrogen yield of maize and ricebean in intercrop relative to their monoculture yields (RY, relative yield) were significantly greater than their respective share of the plant population. Relative yield totals (RYT) for grain, dry matter and nitrogen were always greater than 1. Nitrogen uptake per maize plant increased with progressive replacement of maize by ricebean plants. This increase was similar to that obtained by applying combined N. Available soil nitrogen tended to decrease with increasing maize:ricebean ratio. Increasing the maize:ricebean ratio increased the % of nitrogen derived from fixation in ricebean, the increase being equivalent to that obtained by decreasing combined nitrogen application. Approximately the same amount of fertilizer and soil nitrogen was taken up by maize plus ricebean in intercrop as the maize monoculture. The results suggest that the improved nitrogen economy of the intercrop resulted from the strong competitiveness of maize in the use of mineral nitrogen and the enhancement of nitrogen fixation in intercropped ricebean which made it less dependent on the depleted pool of soil nitrogen.  相似文献   
102.
The effects of soil acidity on the growth and N2-fixing activity of white clover in seven acid topsoils and subsoils of New Zealand were investigated using a glasshouse experiment.The application of phosphate (Ca(H2PO4)2) to the soils resulted in very large increases in white clover growth on all soils. The application of phosphate, as well as increasing P supply, also decreased 0.02M CaCl2-extractable Al levels, but had little effect on exchangeable Al levels.Where adequate phosphate was applied, increasing rates of lime (CaCO3) resulted in increased plant growth on most soils. N2[C2H2]-fixing activity was increased by the first level of lime for one soil, but generally remained approximately constant or declined slightly at higher rates of lime. Up to the point of maximum yield, white clover top weight was more highly correlated with 0.02M CaCl2-extractable soil Al than with exchangeable Al or pH. At pH values greater than 5.5, plant yield declined on some soils, apparently because of Zn deficiency. The data suggest that white clover is unlikely to be affected by Al toxicity at 0.02M CaCl2-extractable Al levels of less than about 3.3 g g–1. However, there were differences between soils in apparent plant tolerance to 0.02M CaCl2-extractable Al, which appeared to be caused by differing C levels in the 0.02M CaCl2 extracts.  相似文献   
103.
The low gas permeability of a diffusion barrier in the cortex of soybean nodules plays a significant role in the protection of nitrogenase from oxygen inactivation. It may also set an upper limit on nodule respiration and nitrogen fixation rates. Two methods which have been used to quantify the gas permeability of leguminous nodules are reviewed and found to be unreliable. A new assay technique for determining both the nodule activity and gas permeability is developed and tested. This ‘lag-phase’ assay is based on the time nodules require to reach steady-state ethylene production after being exposed to acetylene. The technique is rapid, insensitive to errors in biochemical parameters associated with nitrogenase, and is non-destructive. The method was tested with intact aeroponically grown soybean plants for which the mean nodule gas permeability was found to be 13.3×10−3 mms−1. This corresponds to a layer of cells approximately 35 um thick and is consistent with previously reported values.  相似文献   
104.
While diurnal cycles in nitrogen fixation rates are sometimes assumed to result from diurnal variation in photosynthetically active radiation, contradicting evidence exists that indicate soil temperature is the primary environmental influence. These studies assessed the significance of temperature on soybean nitrogen fixation under field conditions. Two groups of intact field-grown soybean plants, one at ambient and the other exposed to a 10°C diurnal variation in soil temperature, were nondestructively assayed for acetylene reduction rates. Activity was closely associated with soil temperature (R2=0.85), even when temperature was 12 h out of phase with ambient. Data were also obtained to determine if the effects of rhizosphere temperature on nitrogen fixation are mediated through an effect on the nodule oxygen permeability. Nodule oxygen permeability of intact, aeroponically grown soybean was closely correlated with the diurnal changes in temperature (R2=0.90).  相似文献   
105.
Before starting a breeding program aimed at improving the nitrogen nutrition ofVicia faba, the authors tried an alternative technique to the acetylene reduction assay, to measure some genetic variability in the plant material. The quantity of dinitrogen fixed by several cultivars ofVicia faba was estimated using a low enrichment15N tracer method and high precision15N mass spectrometry. The fababeans were cultivated for two years in two different soils. The percentage of fixed dinitrogen in the seed varied between genotypes from 40 to 83% of the total nitrogen and was positively correlated with the total seed nitrogen (r=0.64 to 0.86). A highly significant positive correlation was also found between the total seed nitrogen and the quantity of fixed dinitrogen in the seed (r=0.95 to 0.99). The technique used to measure dinitrogen fixation proved to be useful and reliable enough to discriminate between various genotypes, grown over a period of two years in two different soils. However, several non-fixing control plants showed significant differences in their15N enrichment and the problem of choosing a good reference plant was raised and discussed.  相似文献   
106.
Nitrogen fixation in excised root nodules of 2-year-old, postfireCeanothus tomentosus andC. leucodermis seedlings was measured over an 8-month period using the acetylene reduction method. High levels of NO3–N and NH4–N present in postfire soils were limited to the upper 10 cm and did not inhibit nodulation in these deeper-rooting seedlings. Decreases in acetylene reduction activity occurred with decreased soil moisture and increased soil temperature. Nitrogen gains from these two Ceanothus shrub seedlings totalled 1.6 kg N ha–1 yr–1.  相似文献   
107.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   
108.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   
109.
Azospirillum isolates were obtained from rhizosphere soil and roots of three cactaceae species growing under arid conditions. All Azospirillum isolates from rhizosphere and roots ofStenocereus pruinosus andStenocereus stellatus were identified asA. brasilense; isolates of surface-sterilized roots fromOpuntia ficus-indica were bothA. brasilense andA. lipoferum. Azospirilla per g of fresh root in the three species ranged from 70×103 to 11×103. The most active strains in terms of C2H2 reduction (25–49.6 nmol/h·ml) and indoleacetic acid (IAA) production (36.5–77 μg/ml) were those identified asA. brasilense and isolated from Stenocereus roots.A. lipoferum isolated from Opuntia roots produced low amounts of IAA (6.5–17.5 μg/ml) and low C2H2-reduction activity (17.8–21.2 nmol/h·ml).  相似文献   
110.
Peanut (Arachis hypogaea Linn.) Cvs. Robut 33-1 and JL 24 were inoculated with Rhizobium strain NC 92 and a strain ofAzospirillum lipoferum singly and as mixed inoculum. Seed inoculation with these bacteria enhanced nodulation, N content and yield of these cultivars under field conditions. While a mix inoculation of these two diazotrophic cultures had an adverse effect on these parameters as compare to single inoculation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号