首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18558篇
  免费   1606篇
  国内免费   799篇
  2024年   18篇
  2023年   431篇
  2022年   514篇
  2021年   866篇
  2020年   909篇
  2019年   1117篇
  2018年   1011篇
  2017年   664篇
  2016年   616篇
  2015年   857篇
  2014年   1361篇
  2013年   1674篇
  2012年   956篇
  2011年   1146篇
  2010年   925篇
  2009年   980篇
  2008年   944篇
  2007年   968篇
  2006年   792篇
  2005年   751篇
  2004年   572篇
  2003年   421篇
  2002年   427篇
  2001年   253篇
  2000年   182篇
  1999年   169篇
  1998年   169篇
  1997年   165篇
  1996年   117篇
  1995年   128篇
  1994年   119篇
  1993年   87篇
  1992年   88篇
  1991年   58篇
  1990年   56篇
  1989年   33篇
  1988年   37篇
  1987年   41篇
  1986年   22篇
  1985年   38篇
  1984年   59篇
  1983年   44篇
  1982年   47篇
  1981年   43篇
  1980年   22篇
  1979年   14篇
  1978年   14篇
  1977年   6篇
  1976年   6篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases.  相似文献   
953.
954.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   
955.
Cell communication through extracellular vesicles (EVs) has been defined for many years and it is not limited only to neighboring cells, but also distant ones in organisms receive these signals. These vesicles are secreted from the variety of cells and are composed of a distinctive component such as proteins, lipids, and nucleic acids. EVs have different classified subgroups regarding their cell origin, in this context, exosomes are the most appealing particles in cell biology, especially clinical in recent years and are represented as novel therapeutic agents with numerous advantages alongside and/or over cell therapy. However, cell therapy had a hopeful outcome in gastrointestinal diseases which have minimal alternatives in their treatments. Inflammatory bowel disease (IBD), liver fibrosis, gastrointestinal cancers are the examples that cell therapy and immunotherapy were applied in their treatment, therefore, the cell products like exosomes are the beneficial option in their treatment even cancers with promising results in animal models. In this review, we consider the main defined biogenesis, function, and component of secreted exosomes in different cells with a specific focus on the potential application of these exosomes as a cell-free therapeutic approach in gastrointestinal diseases like IBD, gastric cancer, and colon cancer. Additionally, exosomes role as therapeutic reagents mainly mesenchymal stem cells and dendritic cell-derived exosomes in different studies have been under intense investigation and even they are being studied in different clinical trials. Therefore, all these striking functions described for secretome implies the importance of these biocarriers.  相似文献   
956.
957.
Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide. Until recently, it was thought that myocardium was not able to repair itself, but studies have now shown that resident cardiac stem cells have regenerative capacity, and stem cell therapy may be a novel approach for cardiac muscle repair and regeneration. Stem cell-derived paracrine factors have been shown to regulate ventricular remodeling, inflammation, apoptosis, cardiomyocytes regeneration, and neovascularization in regions of infarcted cardiac tissue. In this review, we summarize the evidence from cellular, animal, and clinical studies supporting the potential clinical significance of stem cell therapy as a novel therapeutic approach for the treatment of MI.  相似文献   
958.
959.
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.  相似文献   
960.
Hepatocellular carcinoma (HCC) occurs mainly in patients with chronic liver disease and cirrhosis. Increasing evidence has identified the involvement of microRNAs (miRNAs) acting as essential regulators in the progression of HCC. As predicted by microarray analysis, miR-448 might potentially affect HCC progression by regulating the melanoma-associated antigen (MAGEA). Therefore, the present investigation focused on exploring whether or not miR-448 and MAGEA6 were involved in the self-renewal and stemness maintenance of HCC stem cells. The interaction among miR-448, MAGEA6, and the AMPK signaling pathway was evaluated. It was noted that miR-448 targeted and downregulated MAGEA6, thus activating the AMP-activated protein kinase (AMPK) signaling pathway in HCC. Furthermore, for the purpose of exploring the functional relevance of MAGEA6 and miR-448 on the sphere formation, colony formation, and invasion and migration of HCC stem cells, the CD133+CD44 + HCC stem cells were sorted and treated with the mimic or inhibitor of miR-448, small interfering RNA (siRNA) against MAGEA6 or an AMPK activator AICAR. MAGEA6 silencing or miR-448 overexpression was demonstrated to inhibit the abilities of sphere formation, colony formation, cell migration, and invasion of HCC cells. Afterwards, a rescue experiment was conducted and revealed that MAGEA6 silencing reversed the effects of miR-448 inhibitor on stemness maintenance and self-renewal of HCC stem cells. Finally, after the in vivo experiment was carried out, miR-448 was observed to restrain the tumor formation and stemness in vivo. Altogether, miR-448 activates the AMPK signaling pathway by downregulating MAGEA6, thus inhibiting the stemness maintenance and self-renewal of HCC stem cells, which identifies miR-448 as a new therapeutic strategy for HCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号