首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5704篇
  免费   282篇
  国内免费   390篇
  2023年   74篇
  2022年   88篇
  2021年   121篇
  2020年   129篇
  2019年   140篇
  2018年   145篇
  2017年   139篇
  2016年   146篇
  2015年   145篇
  2014年   206篇
  2013年   450篇
  2012年   207篇
  2011年   188篇
  2010年   137篇
  2009年   245篇
  2008年   320篇
  2007年   315篇
  2006年   249篇
  2005年   228篇
  2004年   230篇
  2003年   213篇
  2002年   180篇
  2001年   154篇
  2000年   105篇
  1999年   131篇
  1998年   123篇
  1997年   98篇
  1996年   102篇
  1995年   105篇
  1994年   83篇
  1993年   86篇
  1992年   81篇
  1991年   69篇
  1990年   59篇
  1989年   77篇
  1988年   72篇
  1987年   59篇
  1986年   55篇
  1985年   76篇
  1984年   92篇
  1983年   58篇
  1982年   69篇
  1981年   59篇
  1980年   52篇
  1979年   49篇
  1978年   49篇
  1977年   30篇
  1976年   23篇
  1974年   20篇
  1973年   16篇
排序方式: 共有6376条查询结果,搜索用时 156 毫秒
71.
Insect herbivores can increase their detoxification activities against a particular plant poison in response to prolonged ingestion of the same compound. For example, larval tobacco hornworms (Manduca sexta) experience a dramatic increase in cytochrome P450 activity against nicotine after ingesting nicotine. While it is generally assumed that this induction process permits increased consumption of toxic plant tissues, we are not aware of any direct experimental support for this assumption. Using a two-tiered approach, we examined the functional significance of P450 induction to M. sexta larvae ingesting a toxic but non-deterrent concentration of nicotine. First, we related the time-course of P450 induction in midgut microsomes to changes in nicotine consumption. When offered a nicotine diet, larvae failed to show a significant increase in consumption before 36 h, which was coincident with the time-course of the induction of midgut P450 activities against aldrin and nicotine. Second, we determined whether inhibiting the induced P450 activities affected nicotine consumption. We found that the increase in nicotine consumption following the induction of nicotine metabolism could be strongly inhibited by treatment with piperonyl butoxide, which by itself did not inhibit consumption. These results provide direct evidence for a causal connection between P450-mediated detoxification activity and consumption of a toxic plant compound.Abbreviation PB piperonyl butoxide  相似文献   
72.
NMR spectroscopy has proved to be a valuable tool in the study of the interactions between enzymes and their substrates. The kinds of structural and dynamic information which can be obtained are illustrated by studies of three enzymes involved in drug metabolism. Cytochromes P450 play a crucial role in metabolism of a wide range of exogenous chemicals. NMR has been used to measure distances from the haem iron of the cytochrome to protons of the bound substrate, leading to detailed structural models for the enzyme-substrate complexes. The other two enzymes, chloramphenicol acetyltransferase and β-lactamase, are responsible for bacterial resistance to specific antibiotics. In chloramphenicol acetyltransferase, NMR has been used to determine the conformation of coenzyme A bound to the enzyme, while in the case of β-lactamase the pK of a specific lysine residue at the active site has been determined, providing valuable information on the catalytic mechanism. Special issue dedicated to Dr. Herman Bachelard.  相似文献   
73.
Damage to foliage of the tomato, Lycopersicon esculentum, causes the induction of proteinase inhibitors and of the oxidative enzymes polyphenol oxidase, peroxidase, and lipoxygenase. The time courses of induction of these proteins by feeding of two caterpillar species (Manduca sexta and Helicoverpa zea) were studied in a series of experiments. In another series of experiments, the effects of plant age on the inducibility of these proteins were studied. In the time course experiments, induction of proteinase inhibitors and oxidative enzymes in the damaged leaflet was rapid, with higher protein activities evident in damaged leaflets within 12–24 h of damage, depending on the enzyme and the species of insect used to damage the plant. Systemic induction of proteinase inhibitors was also rapid, but systemic induction of polyphenol oxidase was delayed relative to systemic induction of proteinase inhibitors, possibly because high constitutive polyphenol oxidase activities obscured expression of systemic induction at earlier time points. Lipoxygenase and peroxidase were not induced systemically. Induction of all proteins persisted for at least 21 days. In the phenology experiments, inducibility of all proteins decreased in magnitude and was less consistent as plants aged. The results of these experiments exemplify the numerous constraints on induction in tomato plants. Knowledge of these physiological constraints is important to an understanding of the ecological role and causal basis of induced resistance.  相似文献   
74.
The NADPH-dependent conversion of amino acids to their aldoximes is an initial step in glucosinolate biosynthesis. A number of microsomal aldoxime-forming monooxygenase activities were detected in leaves from a variety of glucosi-nolate-containing species, whereas barley, bean and tobacco leaves did not contain any such activities. The substrates for these monooxygenases in each species largely correlated with the spectrum of glucosinolates found in that species. No activity was detected that metabolized homomethionine (supposed precursor of 2-propenylglucosinolate [sinigrin]), even in species where sinigrin was the major glucosinolate. In Sinapis species containing hydroxybenzylglucosinolate (sinalbin), activity with L-Tyr was detected, whereas Brassica species containing sinalbin had no such activity. However, these Brassicas did contain an L-Phe monooxygenase activity. Partial characterization of the monooxygenases indicated that in Brassica species, Nasturtium officinalis and Raphanus sativus these resembled the flavin-linked monooxygenases previously found in oilseed rape (Brassica napus) and Chinese cabbage (Brassica campestris). The L-Tyr-dependent activity in Sinapis species, and the L-Phe-dependent activity in Tropacolum majus, had characteristics of cytochrome P450-type enzymes. No similarity was found with any other known amino acid metabolizing enzymes (including decarboxylases, amino acid oxidases and diamine/polyamine oxidases).  相似文献   
75.
The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - ASC L-ascorbic acid - APX ascorbate peroxidase - Ce CO2 concentration in air in the measuring cuvette during photosynthesis measurements - Ci CO2 concentration in the leaf intercellular spaces during photosynthesis measurement - Chl chlorophyll - DHA dehydroascorbic acid - DHA reductase dehydroascorbate reductase - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gluc glucose - GR glutathione reductase - Gsw stomatal conductance with units as mmol H2O m-2 s-1 - GSSG oxidized glutathione - GSH reduced glutathione - G1P glucose-1-phosphate - G6P glucose-6-phosphate - G6P dehydrogenase glucose-6-phosphate dehydrogenase - 6PG 6-phosphogluconate - 6PG dehydrogenase 6-phosphogluconate dehydrogenase - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - MAL malate - MDHA reductase monodehydroascorbate reductase - PE post-emergence - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - PYR pyruvate - Pn net CO2 photoas-similation in leaves - PPFD photosynthetic photon flux density with units of mol photons m-2 s-1 - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TCA cycle tricarboxylic acid cycle - Triose-P DHAP+GAP  相似文献   
76.
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plantArabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designatedAtUBC1-3 andAtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of theAtUBC1-3 andAtUBC4-6 genes by the histochemical analysis of transgenicArabidopsis containing the corresponding promoters fused to the -glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between theAtUBC1-3 andAtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s inArabidopsis.  相似文献   
77.
F. J. Castillo 《Oecologia》1996,107(4):469-477
The antioxidative protection during the C3-CAM shift induced by water stress was investigated in the temperate succulent Sedum album L. The C3-CAM shift was characterized in terms of CO2 exchange, titratable acidity and phosphoenolpyruvate carboxylase activity. Well-watered plants displayed C3-like patterns of gas exchange and exhibited a mild day-night acid fluctuation indicating that those plants were performing CAM-cycling metabolism. Imposed drought highly stimulated CAM cycling, decreasing the net CO2 uptake during the day, eliminating net CO2 efflux at night and stimulating tissue acid fluctuations. As water deficit developed, chlorophyll fluorescence measurements showed a decrease in the Fv/Fm ratio, indicating that photoinhibition could follow after severe drought. Protection might be performed by the increased activity of enzymes involved in the destruction of free radicals and oxidants, but their response depended on the water status of the plant. Ascorbate peroxidase and superoxide dismutase activities increased in plants subjected to mild stress but declined during severe water stress. Catalase activity, however, was quite stable under mild water stress and was clearly inhibited under severe water stress. At this stage, glutathione reductase and monodehydroascorbate reductase seemed to be very important in the protection against oxidants, both increasing considerably their activities under severe water stress. Even if recycling has been shown to alleviate photoinhibition, our results clearly demonstrate that antioxidative enzymes play an important role in the protection of plants from oxidants during the C3-CAM shift induced by water stress.  相似文献   
78.
Chilling ofArabidopsis thaliana (L.) Heynh. callus tissue to 4 °C led to conditions of oxidative stress, as indicated by increased levels of the products of peroxidative damage to cell membranes. Cellular H2O2 was also observed to increase initially upon chilling but by day 8 cellular levels had declined to below control levels. Although levels of catalase activity remained similar to those in unchilled tissue, activity of ascorbate peroxidase increased between days 4 and 8 of chilling to 4 °C. In callus held at 23 °C, levels of reduced glutathione remained static whereas they rose in callus held at 4 °C. Levels of oxidised glutathione were initially low but increased significantly by day 4 in the chilled callus. At 23 °C, however, levels of oxidised glutathione remained low. Between days 1 and 3 at 4 °C, levels of glutathione reductase activity increased but by day 8 glutathione reductase activity was similar to that in cells held at 23 °C. Exposure of callus to abscisic acid at 23 °C also led to increased activities of ascorbate peroxidase and glutathione reductase.Abbreviations ABA abscisic acid - GSH reduced glutathione - GSSG oxidised glutathione - TTC 2,35-triphenyltetrazolium chloride This work is supported by a grant from the Biotechnology and Biological Sciences Research Council.  相似文献   
79.
A gene-dosage population was obtained by crossing two genotypes that were duplex for the GBSS allele. Nulliplex, simplex, duplex or triplex/quadruplex plants could be identified by monitoring the segregation of red and blue microspores after staining with iodine. GBSS activity was significantly different for all groups and showed an almost linear dosage effect for the wildtype GBSS gene. A dosage effect was found for amylose content that was not linear. The amylose content was similar for both the duplex and triplex/quadruplex group. Within the simplex group, differences in amylose content were found, which might be due to a different genetic background. There was no linear correlation between GBSS activity and amylose content. A certain level of GBSS activity led to a maximum amount of amylose, and further increase in GBSS activity did not result in a further increase in amylose content. The presence of one or more wildtype GBSS allele(s), and therefore the presence of amylose in the starch granules, had a great influence on the physico-chemical properties of the starch suspensions.  相似文献   
80.
The effect of NaCI stress on the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH) and glutamate synthase (GOGAT) in callus lines ofVigna radiata which differ in salt resistance, was studied at weekly intervals upto 28 d of growth. After 28 d, the NaCI resistant callus (selected at 300 mM NaCI) at NaCI concentrations higher than 200 mM maintained higher NR activity than non-selected line. NaCI stress also affects aminating and deaminating activities of GDH. The NADH-GDH activity in the presence of NaCI was higher in the resistant than non-selected line. On the other hand, NAD-GDH activity in both the lines was completely inhibited after 7 d of growth. The increased activity of NADH-GDH in resistant calli may play a vital role in protecting the cells from toxic effect of increased endogenous level of ammonia which probably accumulates due to efficient NO3 reduction. NADH-GOGAT activity was found to decrease under salt stress in both the callus lines. Nitrogen assimilation in salt-resistant calli under salt stress was found to be characterized by high NR and NADH-GDH activities, concomitantly with low GOGAT activity. The authors are grateful to DST and CSIR for financial assistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号