首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13094篇
  免费   1534篇
  国内免费   5834篇
  2024年   40篇
  2023年   488篇
  2022年   505篇
  2021年   611篇
  2020年   744篇
  2019年   870篇
  2018年   816篇
  2017年   787篇
  2016年   738篇
  2015年   757篇
  2014年   830篇
  2013年   1104篇
  2012年   795篇
  2011年   776篇
  2010年   675篇
  2009年   860篇
  2008年   787篇
  2007年   855篇
  2006年   768篇
  2005年   721篇
  2004年   650篇
  2003年   629篇
  2002年   506篇
  2001年   472篇
  2000年   397篇
  1999年   400篇
  1998年   306篇
  1997年   290篇
  1996年   274篇
  1995年   252篇
  1994年   238篇
  1993年   178篇
  1992年   173篇
  1991年   136篇
  1990年   141篇
  1989年   132篇
  1988年   101篇
  1987年   78篇
  1986年   69篇
  1985年   77篇
  1984年   74篇
  1983年   37篇
  1982年   86篇
  1981年   53篇
  1980年   42篇
  1979年   45篇
  1978年   21篇
  1977年   22篇
  1976年   12篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Plant growth rate has frequently been associated with herbivore defence: a large investment in quantitative defence compounds occurs at the expense of growth. We tested whether such a relationship also holds for growth rate and pathogen resistance. For 15 radish (Raphanus sativus L.) cultivars, we determined the potential growth rate and the resistance to fungal wilt disease caused by Fusarium oxysporum. We subsequently aimed to explain a putative negative relationship between growth rate and resistance based on plant chemical composition. Both growth rate and resistance level varied greatly among cultivars. Moreover, there was a strong negative correlation between growth rate and resistance, i.e. there are costs associated with a high resistance level. Roots of slow-growing, resistant cultivars have a higher biomass density. Using pyrolysis mass spectrometry. we part1y explained variation in both growth rate and resistance in terms of the same change in chemical composition. Leaves of slow-growing, resistant cultivars contained more cell wall material. Surprisingly, roots of slow-growing, highly resistant cultivars contained significantly less cell wall material, and more cytoplasmic elements (proteins). We speculate that this higher protein concentration is related to high construction and turn-over costs and high metabolic activity. The latter in turn is thought to be responsible for a rapid and adequate resistance reaction, in which phenols may be involved.  相似文献   
12.
13.
14.
15.
16.
Plant-herbivore chemical signals and behavioral plasticity may enhance parasitoid host-foraging efficacy in the field; however, no studies have quantified the potential benefits from these factors under field-type conditions. The effect of plant-herbivore signals and learning on the foraging efficacy of Microplitis croceipes was quantified by directly observing and recording total and sequential duration of various foraging behaviors relative to 5 randomly placed herbivore-damaged and host-infested cotton plants and 20 undamaged and non-host-infested plants. Microplitis croceipes spent significantly more time searching (flying and antennation) on host infested versus uninfested plants. Antennation time was significantly and negatively correlated with successive host stings. Contrary to expectations of increased duration, flight time remained constant throughout the foraging bout, which may indicate that there was some learning associated with flight. These results suggest that plant-herbivore chemical signals and learning enhances the foraging efficacy of M. croceipes.  相似文献   
17.
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.  相似文献   
18.
In this review, our current understanding of the species Escherichia coli and its persistence in the open environment is examined. E. coli consists of six different subgroups, which are separable by genomic analyses. Strains within each subgroup occupy various ecological niches, and can be broadly characterized by either commensalistic or different pathogenic behaviour. In relevant cases, genomic islands can be pinpointed that underpin the behaviour. Thus, genomic islands of, on the one hand, broad environmental significance, and, on the other hand, virulence, are highlighted in the context of E. coli survival in its niches. A focus is further placed on experimental studies on the survival of the different types of E. coli in soil, manure and water. Overall, the data suggest that E. coli can persist, for varying periods of time, in such terrestrial and aquatic habitats. In particular, the considerable persistence of the pathogenic E. coli O157:H7 is of importance, as its acid tolerance may be expected to confer a fitness asset in the more acidic environments. In this context, the extent to which E. coli interacts with its human/animal host and the organism''s survivability in natural environments are compared. In addition, the effect of the diversity and community structure of the indigenous microbiota on the fate of invading E. coli populations in the open environment is discussed. Such a relationship is of importance to our knowledge of both public and environmental health.  相似文献   
19.
The effect of methyl bromide (MB) was tested on active and anhydrobiotic Aphelenchus avenae. A. avenae was induced into anhydrobiosis by three different techniques. Both active and anhydrobiotic nematodes were subjected to 3,000 μ1 MB/liter air for 14 periods from 0 to 82 h. Anhydrobiotic nematodes were more resistant to fumigation than active nematodes, regardless of the technique used to induce anhydrobiosis. The percent survival decreased with increasing MB exposures (μ1 MB × h). For an LD₉₅ of 45,000-54,000 μ1/1 × h were required for active nematodes and >279,000 μ1/1 × h for anhydrobiotic nematodes.  相似文献   
20.
The variable surface glycoprotein (VSG) genes of Trypanosoma brucei have been classified into two groups depending upon whether or not duplication of the genes is observed when they are expressed. We report here the observation of duplication apparently linked to expression of the ILTaT 1.3 gene in the ETaR 1 trypanosome stock. In the ILTaR 1 stock, expression of the ILTaT 1.3 VSG did not involve a new duplication, but instead activation of a preexisting gene copy that had been apparently generated earlier by a duplication event analogous to that directly observed in the ETaR 1 trypanosomes. The results suggest that the well-characterised gene duplications found with other VSG genes are common to all VSG genes but are not directly responsible for controlling expression. All currently available data can be accommodated by a model that assumes that gene duplication and replacement occurs independently of antigenic switching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号