首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relative growth rate correlates negatively with pathogen resistance in radish: the role of plant chemistry
Authors:E HOFFLAND  G J NIEMANN  J A VAN  PELT  J B M PUREVEEN  G B EIJKEL  J J BOON  H LAMBERS
Institution:Department of Plant Ecology and Evolutionary Biology. Utrecht University;P.O.Box 80084, 3508 TB Utrecht, The Netherlands;FOM Institute for Atomic and Molecular Physics, P.O.Box 41883. 1009 DB Amsterdam, The Netherlands
Abstract:Plant growth rate has frequently been associated with herbivore defence: a large investment in quantitative defence compounds occurs at the expense of growth. We tested whether such a relationship also holds for growth rate and pathogen resistance. For 15 radish (Raphanus sativus L.) cultivars, we determined the potential growth rate and the resistance to fungal wilt disease caused by Fusarium oxysporum. We subsequently aimed to explain a putative negative relationship between growth rate and resistance based on plant chemical composition. Both growth rate and resistance level varied greatly among cultivars. Moreover, there was a strong negative correlation between growth rate and resistance, i.e. there are costs associated with a high resistance level. Roots of slow-growing, resistant cultivars have a higher biomass density. Using pyrolysis mass spectrometry. we part1y explained variation in both growth rate and resistance in terms of the same change in chemical composition. Leaves of slow-growing, resistant cultivars contained more cell wall material. Surprisingly, roots of slow-growing, highly resistant cultivars contained significantly less cell wall material, and more cytoplasmic elements (proteins). We speculate that this higher protein concentration is related to high construction and turn-over costs and high metabolic activity. The latter in turn is thought to be responsible for a rapid and adequate resistance reaction, in which phenols may be involved.
Keywords:Raphanus sativus L    Cruciferae              Fusarium oxysporum            radish  chemical composition  pathogen resistance  pyrolysis mass spectrometry  relative growth ralt  wilt disease
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号