首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24721篇
  免费   1613篇
  国内免费   1804篇
  2024年   47篇
  2023年   283篇
  2022年   383篇
  2021年   580篇
  2020年   685篇
  2019年   893篇
  2018年   737篇
  2017年   636篇
  2016年   628篇
  2015年   714篇
  2014年   1128篇
  2013年   1435篇
  2012年   818篇
  2011年   1070篇
  2010年   833篇
  2009年   1109篇
  2008年   1136篇
  2007年   1255篇
  2006年   1133篇
  2005年   1066篇
  2004年   910篇
  2003年   858篇
  2002年   829篇
  2001年   699篇
  2000年   666篇
  1999年   631篇
  1998年   611篇
  1997年   538篇
  1996年   583篇
  1995年   497篇
  1994年   460篇
  1993年   502篇
  1992年   426篇
  1991年   420篇
  1990年   345篇
  1989年   288篇
  1988年   286篇
  1987年   248篇
  1986年   211篇
  1985年   261篇
  1984年   278篇
  1983年   156篇
  1982年   198篇
  1981年   166篇
  1980年   138篇
  1979年   97篇
  1978年   92篇
  1977年   49篇
  1976年   44篇
  1975年   24篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
161.
Summary Lathyrus sylvestris is a pioneer legume often found in disturbed habitats. Mainly reproduced through vegetative propagation, this clonal species presents a system of ramets that remain connected for several years. The existence of carbon transfer among ramets within a clone has been studied using 14C in situ. Assimilate translocation from primary to secondary ramets was observed in all clones when the primary ramet was exposed to 14CO2. The amount of transfer ranged from trace up to 90% of the total 14C incorporated. However, in only half of the clones there was consistent enrichment of the secondary ramet (5 to 89%) suggesting that interramets transfer of carbon may be facultative. Furthermore, when significant export occurred from the primary ramet, it was always principally towards only one ramet even when the clone included more than one. The transfer of 14C from secondary to primary ramets was shown to be significant only when photosynthesis of the latter was decreased by shading. In this case import of carbon was never more than 60% of the incorporated 14C.No correlation was found between age or size of the ramets and the intensity of transfer. The shading effect let suppose that transfers are mainly driven by carbon limitation due to changing environmental conditions and not to the state of ramet maturity. The adaptative advantage of such facultative physiological integration between ramets of a clone is discussed.  相似文献   
162.
163.
Summary Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.  相似文献   
164.
Hasenstein, K. H. and Evans, M. L. 1988. The influence of calcium and pH on growth in primary roots of Zea mays. - Physiol. Plant. 72: 466–470.
We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 × Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 m M CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 m M MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.  相似文献   
165.
The effect of 253.7 nm ultraviolet radiation on elongation growth, medium acidification and changes in electric potential difference between vacuole and external medium in cells of maize ( Zea mays L.) coleoptile segments was investigated. It was found that irradiation with 390, 1170, 3900 and 5 850 J m−2 UV-C (ultraviolet radiation 253.7 nm) inhibited elongation growth, whereas at 195 J m−2 stimulation of growth was observed. The administration of IAA (10−5 M ) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium, measured simultaneously with growth, showed that the exposure of the segments to UV-C caused inhibition of H+-extrusion (or stimulation of H+ uptake). The presence of IAA (10−5 M ) in the incubation medium promoted (except after 5850 J m−2 irradiation) H+-extrusion to a level comparable with that produced by IAA in non-irradiated segments. In UV-C irradiated segments the potential difference underwent significant alterations. Irradiation of coleoptile segments with 390 J m−2 caused a transient depolarization, which was fully reversible within 30 min, while at higher doses depolarization was irreversible. The hyperpolarization of the membrane potential (MP) in cells of maize coleoptile induced by IAA was completely nullified by subsequent irradiation with UV-C. It is suggested that UV-C inhibited IAA-induced growth by a mechanism independent of cell wall acidification.  相似文献   
166.
Indoleacetic acid (IAA), a factor that induces growth in epicotyls of cicer arietinum L. cv. Castellana, increases the autolytic capacity of the cell walls by 50%, suggesting that autolysis is related to the processes of cell wall loosening that accompany growth. IAA promotes an increase in the specific activities of the enzymes involved in autolysis, mainly α-galactosidase (EC 3.2.1.22). This relationship autolysis-growth. was also observed in a study of the autolytic capacity of cell walls from regions of the epicotyl with different growth capacity. The sugars released and the level of enzymatic protein were higher in the subapical region that towards the base.  相似文献   
167.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   
168.
Circumnutation of Phaseolus vulgaris L. cv. Blanc de Juillet twining shoots was examined at the cellular level. Cell growth was monitored inside the free-moving part of the shoot as a function of time and position with respect to the terminal bud. Complete elongation of epidermal cells required >7 days. A 60% increase in length of the cells in the bending zone was observed. Scanning and transmission electron microscopy studies showed the elasticity of cell walls, the extent of plasmodesmata and endoplasmic reticulum of epidermal cells. The osmotic potential in epidermal cells of the bending zone displayed significant differences only between the concave and convex sides. The pattern of cell growth in twining shoots is discussed. Circumnutation could be seen as a consequence of periodic turgor changes inducing periodic growth.  相似文献   
169.
The activity levels of enzymes of aromatic amino acid biosynthesis respond to changing physiological states of growth, as illustrated by results obtained from suspension-cultured cells of Nicotiana silvestris Speg. et Comes line ANS 1 (2N=24). The experimental system provides a foundation for interpretations about overall regulation of enzyme levels in relationship to growth physiology. Levels of activity for shikimate dehydrogenase (EC 1.1.1.25), prephenate aminotransferase and arogenate dehydrogenase were followed throughout a growth cycle obtained by a conventional subculture protocol. Enzyme date were also obtained from cell cultures maintained in continuous exponential growth for greater than 10 generations (EE cells). Both shikimate dehydrogenase and prephenate aminotransferase exhibited elevated stationary-phase levels of enzyme, much of which was carried over into a subsequent subculture. At least 4 generations of exponential growth were required before diminution of the latter two enzymes to the levels characteristic of truly exponential-phase growth (EE cells) occurred. This is reminiscent of the overall behavior of 3-deoxy-D- arabino -heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15), specifically attributed to the properties of the cytosolic isozyme species (DAHP synthase-Co). Elevation of arogenate dehydrogenase also occurred in stationary-phase cells, but diminished rapidly during lag phase to reach the level characteristic of EE cells.  相似文献   
170.
The effect of soil salinity and soil moisture on the growth and yield of maxipak wheat (Triticum aestivum L.) was studied in a lath-house experiment in whih, chloride-sulphate salt mixtures were used to artificially salinize a sandy loam soil from Al-Jadyriah Baghdad. Five soil salinity levels of ECe's equal to 1.7 (Control) 4.2, 5.8, 8.1, 9.4 and 11.0dSm–1 were prepared and used at 3 levels of available soil moisture depletion, namely, 25, 50, and 75% as determined by weight. Both growth (vegetative) and yield components were studied throughout the growing season.Results showed that increasing the soil salinity from 1.7 to 11.0 dSm–1, and decreasing the available soil water from 75 to 25% resulted in independent and significant decreases in Mazipak wheat growth and yield components at different stages of plant development. Root growth showed more sensitivity to both available soil water and soil salinity level than other components. It has been concluded that at soil salinity levels of more than 8.0 dSm–1, available soil water became a limiting factor on wheat growth and the maintenance of 75% of available soil water during the growth period is recommended to obtain satisfactory grain yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号