首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   73篇
  国内免费   68篇
  2024年   4篇
  2023年   15篇
  2022年   13篇
  2021年   22篇
  2020年   35篇
  2019年   38篇
  2018年   26篇
  2017年   22篇
  2016年   34篇
  2015年   25篇
  2014年   28篇
  2013年   54篇
  2012年   19篇
  2011年   22篇
  2010年   16篇
  2009年   40篇
  2008年   37篇
  2007年   38篇
  2006年   29篇
  2005年   29篇
  2004年   14篇
  2003年   39篇
  2002年   20篇
  2001年   23篇
  2000年   11篇
  1999年   11篇
  1998年   21篇
  1997年   12篇
  1996年   11篇
  1995年   5篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   5篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有801条查询结果,搜索用时 62 毫秒
51.
Complex networks of species interactions might be determined by species traits but also by simple chance meetings governed by species abundances. Although the idea that species traits structure mutualistic networks is appealing, most studies have found abundance to be a major structuring mechanism underlying interaction frequencies. With a well‐resolved plant–hummingbird interaction network from the Neotropical savanna in Brazil, we asked whether species morphology, phenology, nectar availability and habitat occupancy and/or abundance best predicted the frequency of interactions. For this, we constructed interaction probability matrices and compared them to the observed plant‐hummingbird matrix through a likelihood approach. Furthermore, a recently proposed modularity algorithm for weighted bipartite networks was employed to evaluate whether these factors also scale‐up to the formation of modules in the network. Interaction frequencies were best predicted by species morphology, phenology and habitat occupancy, while species abundances and nectar availability performed poorly. The plant–hummingbird network was modular, and modules were associated to morphological specialization and habitat occupancy. Our findings highlight the importance of traits as determinants of interaction frequencies and network structure, corroborating the results of a previous study on a plant–hummingbird network from the Brazilian Atlantic Forest. Thus, we propose that traits matter more in tropical plant–hummingbird networks than in less specialized systems. To test the generality of this hypothesis, future research could employ geographic or taxonomic cross‐system comparisons contrasting networks with known differences in level of specialization.  相似文献   
52.
The seamounts chain offers a set of fragmented habitats in which species with poor dispersive ability may undergo divergence in allopatry. Such a scenario may explain the endemism often described on seamounts. In gastropods, it is possible to infer the mode of development of a species from the morphology of its larval shell. Accordingly, we examine the population genetics of several caenogastropods from the Norfolk and Lord Howe seamounts (south‐west Pacific) with contrasting modes of larval development. A prerequisite to our study was to clarify the taxonomic framework. The species delimitation was ruled using an integrative approach, based on both morphological and molecular evidence. Molecular data indicate an unexpected taxonomic diversity within the existing species names. Both the clarification of the taxonomic framework and the importance of the sampling effort allow us to confidently detect cryptic diversity and micro‐endemism. These results are discussed in relation to the dispersive capacities of the organisms. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 420–438.  相似文献   
53.
54.
South–west Australia contains extensive seagrass meadows along 2,500 km of coastline from the shallow subtidal to 50+ m water depths, and in many of the 51 bar-built estuaries along the coast. There are geomorphological differences between the south and west coasts that result in different patterns of swell exposure influencing the processes that structure seagrass habitats. In this paper, ‘sheltered’, ‘exposed’ and ‘estuarine’ seagrass habitat types are defined for south–west Australia to synthesize processes influencing seagrass communities. Sheltered habitats in south–west Australia are characterized by high light, low to moderate water motion and sporadic disturbance from storms, making them ideal habitats for a diversity of seagrass assemblages. Exposed seagrass habitats are characterized by the presence of strong and consistent ocean swells (3–8 m), predominantly from the south or south–west and seagrasses exhibit a suite of adaptive traits to survive the effects of exposure to ocean swell and associated sand movement. These include morphological features such as heavy fiber reinforcement to strengthen the aboveground stems or leaves, deep vertical rhizomes and life history traits such as rapid growth and high seed set. Within estuarine habitats highly dynamic seagrass communities are the result of fluctuating annual cycles in temperature, light and salinity. Compared to global seagrass meadows, coastal south–west Australian seagrass habitats experience high light, low nutrients and high water movement. Despite these differences, similarities with other regions do exist and here we place the habitats of south–west Australia into a global context using comparative data. The wide array of morphology and life history traits displayed among seagrass species of south–west Australia are presented in a conceptual model including habitat type, physical stressors and seagrass responses. The combination of adaptations to the habitats and processes that define them make south–west Australia a region where there is an unusually high number of co-occurring seagrass species, the highest in the world for a temperate environment (19 species), and approaching the species diversity of many tropical environments. Linking aspects of seagrass habitat, physical aspects of the environment and seagrass life history provides a context for applying knowledge gained from seagrasses in south–west Australia to other coastal ecosystems throughout the world.  相似文献   
55.
56.
随着人类和其他生物赖以生存的环境破碎化程度的加剧,许多以前是连续分布的物种,目前不得不在破碎化生境(斑块)中求生存,所以,种群在破碎化生境(斑块)中分布问题的研究对生物保护和生境重建意义重大.本文运用Leslie矩阵和Markov链建立了一个具年龄结构的种群在破碎化生境中随时间动态变化的分布模型,讨论了种群在该生境中持续存在以及灭绝的条件.  相似文献   
57.
Fungal biodiversity in freshwater, brackish and marine habitats was estimated based on reports in the literature. The taxonomic groups treated were those with species commonly found on submerged substrates in aquatic habitats: Ascomycetes (exclusive of yeasts), Basidiomycetes, Chytridiomycetes, and the non-fungal Saprolegniales in the Class Oomycetes. Based on presence/absence data for a large number and variety of aquatic habitats, about 3,000 fungal species and 138 saprolegnialean species have been reported from aquatic habitats. The greatest number of taxa comprise the Ascomycetes, including mitosporic taxa, and Chytridiomycetes. Taxa of Basidiomycetes are, for the most part, excluded from aquatic habitats. The greatest biodiversity for all groups occurs in temperate areas, followed by Asian tropical areas. This pattern may be an artifact of the location of most of the sampling effort. The least sampled geographic areas include Africa, Australia, China, South America and boreal and tropical regions worldwide. Some species overlap occurs among terrestrial and freshwater taxa but little species overlap occurs among freshwater and marine taxa. We predict that many species remain to be discovered in aquatic habitats given the few taxonomic specialists studying these fungi, the few substrate types studied intensively, and the vast geographical area not yet sampled.  相似文献   
58.
Endemic freshwater finfish of Asia: distribution and conservation status   总被引:2,自引:1,他引:1  
Freshwater finfish species richness and level of endemism in East, and South and South‐East Asia that included 17 nations were studied using available databases, and included nation‐wise distribution, habitat types, and conservation status. The number of endemic finfish species in the region was 559, belonging to 47 families. Families Cyprinidae and Balitoridae accounted for 43.5% and 16.2% of the total number of endemic species in the region, respectively, followed by Sisoridae (25), Gobiidae (20), Melanotaeniidae (19), and Bagridae (16), and the other 41 families had at least one endemic species. Nation‐wise the most number of endemic freshwater finfish species occur in India (191), followed by China (88), Indonesia (84), and Myanmar (60). In India, the endemic species accounted for 26.4% of the native freshwater fish fauna, followed by South Korea (16.9%), the Philippines, (16.3%) and Myanmar (15.7%). Statistically significant relationships discerned between the number of indigenous and endemic species richness to land area (Xla in 103 km2) of the nations in the region were, Yin = 218.961 Ln(Xla) – 843.1 (R2 = 0.735; P < 0.001) and Ye = 28.445 Ln Xla?134.47 (R2 = 0.534; P < 0.01), respectively, and between indigenous and endemic species richness was Ye = 0.079Xn? 1.558 (R2 = 0.235; P < 0.05). The overall conservation status of endemic finfish in Asia was satisfactory in that only 92 species were in some state of vulnerability, of which 37 species (6.6%) are endangered or critically endangered. However, the bulk of these species (83.7%) were cave‐ and or lake‐dwelling fish. However, nation‐wise, the endemic freshwater finfish fauna of the Philippines and Sri Lanka, based on the imperilment index, were found to be in a highly vulnerable state. Among river basins, the Mekong Basin had the highest number of endemic species (31.3%). The discrepancies between databases are highlighted and the need to consolidate information among databases is discussed. It is suggested that the Mekong Basin be considered as a biodiversity hotspot, and appropriate management strategies be introduced in this regard.  相似文献   
59.
Global biodiversity is decreasing as a result of human activities. In many parts of the world, this decrease is due to the destruction of natural habitats. The European perspective is different. Here, traditional agricultural landscapes developed into species-rich habitats. However, the European biodiversity heritage is strongly endangered. One of the countries where this biodiversity is best preserved is Romania. We analyse the possible changes in Romania's land-use patterns and their possible benefits and hazards with respect to biodiversity. As model group, we used butterflies, whose habitat requirements are well understood. We determined the ecological importance of different land-use types for the conservation of butterflies, underlining the special importance of Romania's semi-natural grasslands for nature conservation. We found that increasing modern agriculture and abandonment of less productive sites both affect biodiversity negatively — the former immediately and the latter after a lag phase of several years. These perspectives are discussed in the light of the integration of Romania into the European Union.  相似文献   
60.
Movement is the process by which individual organisms are displaced over time to eat, reproduce and defend resources. Fractal analysis is a technique used to study animal movement that measures spatial complexity of path tortuosity; here, we apply it to characterize the movement patterns of the Eurasian badger (Meles meles) in a Mediterranean landscape. We calculated path tortuosity overall and seasonally, and for individuals of different sexes and social groups. The influence of variables related to badgers’ resources (food, shelter, water), human infra-structures and weather conditions were analysed with respect to the tortuosity of each badger’s path. A total of 55 search paths from six badgers were considered for this study. Although badgers generally displayed convoluted movement, there were two exceptions: (a) males overall and (b) all badgers in summer; for both, movements had a lower fractal value, i.e. were less tortuous. The convoluted movement pattern generally observed is probably adapted to the clumped distribution of food in the study area. Nevertheless, our results suggest that the use of dens and latrines were the principal determinants of tortuosity of badgers’ paths while foraging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号