首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seamounts: centres of endemism or species richness for ophiuroids?   总被引:1,自引:0,他引:1  
Aim To test the hypotheses that seamounts exhibit high rates of endemism and/or species richness compared to surrounding areas of the continental slope and oceanic ridges. Location The south‐west Pacific Ocean from 19–57° S to 143–171° E. Methods Presence/absence museum data were compiled for seamount and non‐seamount areas at depths between 100 and 1500 m for the Ophiuroidea (brittle‐stars), an abundant and speciose group of benthic invertebrates. Large‐scale biogeographical gradients were examined through multivariate analyses at two spatial scales, at the scale of seamounts (< 1° of latitude/longitude) and regions (5–9°). The robustness of these patterns to spatially inconsistent sampling effort was tested using Monte Carlo‐style simulations. Levels of local endemism and species richness over numbers of samples were compared for seamount and non‐seamount areas using linear regressions. Non‐seamount populations were randomly generated from areas and depth ranges that reflected the typical sampling profile of seamounts. Results Seamount ophiuroid assemblages did not exhibit elevated levels of species richness or narrow‐range endemism compared with non‐seamount areas. Seamounts can exhibit high overall species richness for low numbers of samples, particularly on seamounts supporting a dense coral matrix, but this does not increase with additional sampling at the rates found in non‐seamount areas. There were relatively few identifiable seamount specialists. In general, seamount faunas reflected those found at similar depths in surrounding areas, including the continental slope. Seamount and non‐seamount faunas within the study area exhibited congruent latitudinal and bathymetric species turnover. Main conclusions Seamount faunas were variable for ophiuroid faunal composition, species richness and narrow‐range endemism, reflecting their environmental diversity and complex history. The continental slope was also variable, with some areas being particularly species rich. Broad geomorphological habitat categories such as ‘seamounts’ or ‘continental slope’ may be at the wrong scale to be useful for conservation planning.  相似文献   

2.
Aim To examine how current and historical environmental gradients affect patterns of millipede (Diplopoda) endemism and species turnover in a global hotspot of floristic diversity, and to identify regions of high endemism and taxonomic distinctness for conservation management. Location South‐western Australia. Methods Museum database records of millipedes (subclasses Pentazonia and Helminthomorpha), supplemented with extensive fieldwork, were used to map species richness, species turnover (β‐diversity), weighted endemism, average taxonomic distinctness and variation in taxonomic distinctness in half‐degree grid squares (c. 2500 km2). Generalized linear models were used to examine relationships between these parameters with rainfall (present day and historical), topography and human disturbance (clearing for agriculture and urbanization). Results Millipede species richness, particularly within the order Spirostreptida, and millipede endemism were positively associated with large within‐cell differences in elevation (mountainous regions). Large variation in taxonomic distinctness (unevenness in the taxonomic tree) in higher‐rainfall areas was mainly due to speciation within the Spirostreptida genus Atelomastix. Hotspots of millipede endemism and taxonomic distinctness were identified within three categories of importance: primary (Stirling Range East, Cape Le Grand, Cape Arid, Walpole, Porongurups), secondary (Mount Manypeaks, Bremer Bay, Stirling Range West, Duke of Orleans Bay, Ravensthorpe, Albany, Busselton) and tertiary (Nornalup). A species turnover boundary was positively associated with rainfall, broadly located in the transition zone of 300–600 mm year?1. Main conclusions The current lack of knowledge on the endemism of invertebrates hampers their incorporation into conservation planning. With this knowledge we can identify global biodiversity hotspots and, at a smaller scale, significant conservation areas within a region. Here we have shown that weighted endemism and taxonomic distinctness are useful tools in identifying centres of high endemism and speciation for millipedes within the south‐west Australian hotspot. Moreover, it is unlikely that either vertebrates or vascular plants will be useful surrogates for identifying significant areas for invertebrate conservation. While other workers have shown that vascular plants, mammals and frogs have different centres of endemism within south‐west Australia, our results show that centres of endemism for millipedes encompass all of these plus other areas.  相似文献   

3.
Chemosynthetic ecosystems are distributed worldwide in fragmented habitats harbouring seemingly highly specialized communities. Yet, shared taxa have been reported from highly distant chemosynthetic communities. These habitats are distributed in distinct biogeographical regions, one of these being the so‐called Atlantic Equatorial Belt (AEB). Here, we combined genetic data (COI) from several taxa to assess the possible existence of cryptic or synonymous species and to detect the possible occurrence of contemporary gene flow among populations of chemosynthetic species located on both sides of the Atlantic. Several Evolutionary Significant Units (ESUs) of Alvinocarididae shrimp and Vesicomyidae bivalves were found to be shared across seeps of the AEB. Some were also common to hydrothermal vent communities of the Mid‐Atlantic Ridge (MAR), encompassing taxa morphologically described as distinct species or even genera. The hypothesis of current or very recent large‐scale gene flow among seeps and vents was supported by microsatellite analysis of the shrimp species Alvinocaris muricola/Alvinocaris markensis across the AEB and MAR. Two nonmutually exclusive hypotheses may explain these findings. The dispersion of larvae or adults following strong deep‐sea currents, possibly combined with biochemical cues influencing the duration of larval development and timing of metamorphosis, may result in large‐scale effective migration among distant spots scattered on the oceanic seafloor. Alternatively, these results may arise from the prevailing lack of knowledge on the ocean seabed, apart from emblematic ecosystems (chemosynthetic ecosystems, coral reefs or seamounts), where the widespread classification of endemism associated with many chemosynthetic taxa might hide wider distributions in overlooked parts of the deep sea.  相似文献   

4.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

5.
Dinoponera lucida (Formicidae; Ponerinae) is an extinction‐threatened species of ant which is endemic in the central corridor of the Atlantic Forest. We used mitochondrial sequences of the Cox1, Cox2 and Cytb genes in order to infer some aspects of the evolutionary history and phylogeography of this ant. High genetic divergence and population structure were observed for the whole species. The current pattern of D. lucida diversity seems to be shaped during different geological times: middle Pliocene, early Pleistocene and mainly late Pleistocene, when the reduction of populations generated a structure pattern of the genetic variation of this species. Our data show that this structure results from the maintenance of populations of D. lucida within very small putative refuges to the south of the central Bahia refugium. We thus argue that, for some Atlantic forest endemic species, especially those resistant to very small fragments of forest, such as D. lucida, the small putative refuges were as important as, or even more important than, larger and stable refuges for the creation and maintenance of diversity, adding another piece to the puzzle of the mechanisms underlying local endemism. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 949–960.  相似文献   

6.
Traditional models of amphibian dispersal and gene flow point to low dispersal and high philopatry. In recent years, this traditional view has been challenged and it appears that no general model holds across taxa. Conservation of amphibians cannot be addressed on an over‐arching scale, but must come on a case‐by‐case basis, especially for range‐restricted species where information on gene flow and migration must be incorporated into conservation efforts. The only two members of the genus Capensibufo Grandison, 1980 (Anura: Bufonidae) are range restricted small bufonids, with distributions limited to montane areas in South Africa. Using a Bayesian analysis of two mitochondrial markers (16S and ND2), we examined the genetic patterns in Capensibufo rosei and Capensibufo tradouwi in order to understand both taxonomic and geographic boundaries. These species were not monophyletic, and demonstrate no clear taxonomic boundaries. Instead, the genus is extremely diverse genetically, with distinct lineages confined to isolated mountains that represent geographic boundaries. In addition, bioclimatic modelling using MAXENT and scenarios of climatic conditions at both the present and last glacial maximum suggest multiple bioclimatic and physical barriers to gene flow at present and in the past. We conclude that members of the genus have very low vagility, that current taxonomic boundaries are inadequate, and that strong geographic structuring has undoubtedly contributed to genetic diversity at the species level, rather than the population level. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 822–834.  相似文献   

7.
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28.  相似文献   

8.
Material ascribed to the genus Callulina from north‐east Tanzania and south‐east Kenya is assessed. Three new species of Callulina are described from the North ( Callulina laphami sp. nov. ) and South ( Callulina shengena sp. nov. and Callulina stanleyi sp. nov. ) Pare Mountains in Tanzania. The species are diagnosed based on morphological, acoustic, and molecular data. A new key to the species of Callulina is provided. Based on an interpretation of the International Union for Conservation of Nature (IUCN) red list, we suggest that the three species will qualify as critically endangered, because of their small distributions and the ongoing threat to their habitat. We reveal the high local endemism of Callulina in the northern part of the Eastern Arc Mountains, with each species restricted to no more than one mountain (fragment) block. This high local endemism in Callulina is probably widespread across the Eastern Arc, raising further conservation concern for this group of amphibians. Based on new molecular phylogenetic data for Callulina, we discuss biogeographical relationships among north‐east Tanzanian mountains, and evolutionary patterns in Eastern Arc breviciptids. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 496–514.  相似文献   

9.
Polyphyletic arrangements in DNA phylogenies are often indicators of cryptic species diversity masked by erroneous taxonomic treatments that are frequently based on morphological data. Although mitochondrial (mt)DNA polyphyly is detected relatively rarely in phylogenetic studies, it has recently been found in a variety of tyrant‐flycatcher (Tyrannidae) groups. In the present study, we provide a DNA phylogeny for a mitochondrial and a nuclear locus with a complete species sampling in Zimmerius flycatchers, showing that the genus is characterized by multiple mtDNA polyphyly. Based on phylogenetic and life‐history information, we suggest the elevation of a number of taxa to species status, leading to a doubling of Zimmerius species‐level diversity compared to taxonomic treatments conducted before 2001. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●●, ●●–●●.  相似文献   

10.
A new species of Daptonema is described based upon morphological characters and 18S rRNA sequence. Daptonema matrona sp. nov. was collected in Pina Basin (north‐eastern Brazil). It differs from all other species of the genus by the presence of reduced cephalic setae and straight spicules. These features require an adaptation of the generic diagnosis. Moreover, the females are characterized by intra‐uterine development of the offspring, considered herein as their major autapomorphic feature. Molecular systematic analyses supported Daptonema matrona sp. nov. as a distinct genetic and evolutionary lineage. The data also indicate hypotheses of taxonomic synonymies amongst some related taxa from Xyalidae as well as the paraphyly of Daptonema. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 1–15.  相似文献   

11.
Aim To explore global patterns of riverine fish endemism by applying an island biogeography framework to river drainage basins and highlight evolutionary mechanisms producing two kinds of endemism: neo‐endemism, arising from within‐drainage cladogenetic speciation, and palaeo‐endemism, arising from species range contraction or anagenetic speciation. Location World‐wide. Methods We use a uniquely comprehensive data set of riverine fish species distributions to map global fish endemism patterns. We then use the relationships between (1) total species richness and proportions of endemic species and (2) total species richness and a measure of in situ (i.e. within‐drainage basin) probability of speciation by cladogenesis, to identify the two distinct forms of endemism. After separating drainage basins into two different sets according to dominance of one of these two forms, we apply a model averaging procedure to highlight, for both datasets, the environmental and historical variables that better explain endemism patterns. We finally analyse the effect of biotic components related to dispersal ability on the percentages of both kinds of endemism among lineages. Results Our results indicate that the two types of endemism are distributed differently across space and taxonomic lineages: (1) neo‐endemism, positively related to the overall richness of the drainage basin, is essentially linked to in situ cladogenetic speciation and is positively related to drainage basin area, negatively related to climate variability since glacial periods and negatively related to all proxies of dispersal ability; and (2) palaeo‐endemism, not directly contributing to drainage basin richness, is a pure process of extinction through range contraction and/or isolation through time and is mostly related to geographic isolation, glacial history and positively related to marine‐derived origin of families. Main conclusions The non‐random spatial and taxonomic distribution of neo‐endemism and palaeo‐endemism sharply reflects the role of evolutionary processes and provides a way to identify areas of high conservation interest based on their high present and future diversification potential.  相似文献   

12.
The recognition of areas of endemism (AEs) is important for conservation biology and biogeographical regionalization. Our objective was to quantitatively identify AEs and distributional congruence patterns of native rodents at the tropical/temperate transition in the central Andes. We analysed 6200 geo‐referenced distributional records of 80 species in north‐western Argentina using NDM/VNDM software. We found 20 AEs defined by 22 endemic species (27% of the total rodent fauna) and 34 patterns of distributional congruence in non‐endemic rodents. Geographical range congruence follows two main patterns running parallel along the Andes. One is related to the humid eastern slopes of the Andes (Argentinean Yungas forest) and the other to the high Andes (Argentinean Puna plateau). Endemism was mainly restricted to the southernmost part of the Yungas forest and adjacent dryer valleys (Monte desert). Species diversity was highest in the northern sector of the Argentinean Yungas forest, where several species reach their southern distributional range. This incongruence among hotspots of diversity and endemism has also been also noted in diversity studies at continental and global scales. Our results provide a starting point for conservation planning in the southernmost Central Andes, which combines the taper of tropical diversity and range‐restricted species endemic to the tropical–temperate transition. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 163–179.  相似文献   

13.
Aim The aim of this research is to develop and investigate methods for the spatial analysis of diversity based on genetic and taxonomic units of difference. We use monophyletic groups of species to assess the potential for these diversity indices to elucidate the geographical components of macro‐scaled evolutionary processes. Location The range occupied by Pultenaea species in temperate and sub‐tropical eastern Australia, extending from western South Australia (133° E–32° S) to Tasmania (146° E–43° S) to coastal central Queensland (148° E–20° S). Methods We applied a series of both spatially explicit and spatially implicit analyses to explore the nature of diversity patterns in the genus Pultenaea, Fabaceae. We first analysed the eastern species as a whole and then the phylogenetic groups within them. We delineated patterns of endemism and biotic (taxon) regions that have been traditionally circumscribed in biogeographical studies of taxa. Centres of endemism were calculated using corrected weighted endemism at a range of spatial scales. Biotic regions were defined by comparing the similarity of species assemblages of grid cells using the Jaccard index and clustering similar cells using hierarchical clustering. On the basis that genetically coherent areas were likely to be more evolutionary informative than species patterns, genetic indices of similarity and difference were derived. A matrix of similarity distances between taxa was generated based on the number of shared informative characters of two sections of trnL‐F and ndhF chloroplast nuclear regions. To identify genetically similar areas, we clustered cells using the mean genetic similarities of the species contained within each pair of cells. Measures of the mean genetic similarity of species in areas were delineated using a geographically local multi‐scalar approach. Resultant patterns of genetic diversity are interpreted in relation to theories of the evolutionary relationships between species and species groups. Results Centres of Pultenaea endemism were defined, those of clades 1 congruent with the spatially separated centres of clades 2 and 3. The taxonomic classification analysis defined cells with shared groups of species, which in some cases clustered when plotted in geographic space, defining biotic regions. In some instances the distribution of biotic regions was congruent with centres of endemism, however larger scale groupings were also apparent. In clade 1 one set of species was replaced by another along the extent of the range, with some connectivity between some geographically disjunct regions due to the presence of widespread species. In the combined analysis of clade 2 and 3 species the major biotic (taxonomic) groups with geographic coherence were defined by species in the respective clades, representing the geographic separation of these clades. However distinctive biotic regions within these main groupings of clades 2 and 3 were also apparent. Clustering cells using the mean genetic similarities of the species contained within each pair of cells indicated that some of the taxonomically defined biotic boundaries were the result of changes in composition of closely related species. This was most apparent in clades 1 and 2 where most cells were highly genetically similar. In clade 3 genetically distinct groups remained and were in part defined by sister taxa with disjunct distributions. Gradients in mean genetic similarity became more apparent from small to larger scales of analysis. At larger scales of analysis, regions of different levels of genetic diversity were delineated. Regions with highest diversity levels (lowest level of similarity) often represented regions where the ranges of phylogenetically distinctive species intergraded. Main conclusions The combined analysis of diversity, phylogeny and geography has potential to reveal macro‐scaled evolutionary patterns from which evolutionary processes may be inferred. The spatial genetic diversity indices developed in this study contribute new methods for identifying coherent evolutionary units in the landscape, which overcome some of the limitations of using taxonomic data, and from which the role of geography in evolutionary processes can be tested. We also conclude that a multiple‐index approach to diversity pattern analysis is useful, especially where patterns may be the result of a long history of different environmental changes and related evolutionary events. The analysis contributes to the knowledge of large‐scale diversity patterns of Pultenaea which has relevance for the assessment of the conservation status of the genus.  相似文献   

14.
The Hippasterinae is a subfamily within the Goniasteridae, consisting of five genera and 26 species, which occur in cold‐water settings ranging from subtidal to abyssal depths. All known genera were included in a cladistic analysis resulting in two most parsimonious trees, supporting the Hippasterinae as monophyletic. Our review supports Sthenaster emmae gen. et sp. nov. as a new genus and species from the tropical Atlantic and two new Evoplosoma species, Evoplosoma claguei sp. nov. and Evoplosoma voratus sp. nov. from seamounts in the North Pacific. Hippasteria caribaea is reassigned to the genus Gilbertaster, which previously contained a single Pacific species. Our analysis supports Evoplosoma as a derived deep water lineage relative to its continental‐shelf, shallow water sister taxa. The genus Hippasteria contains approximately 15 widely distributed, but similar‐looking species, which occur in the northern and southern hemispheres. Except for Gilbertaster, at least one species in each genus has been observed or is inferred to prey on deep‐sea corals, suggesting that this lineage is important to the conservation of deep‐sea coral habitats. The Hippasterinae shares several morphological similarities with Circeaster and Calliaster, suggesting that they may be related. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 266–301.  相似文献   

15.
We investigated the effects of contemporary and historical factors on the spatial variation of European dragonfly diversity. Specifically, we tested to what extent patterns of endemism and phylogenetic diversity of European dragonfly assemblages are structured by 1) phylogenetic conservatism of thermal adaptations and 2) differences in the ability of post‐glacial recolonization by species adapted to running waters (lotic) and still waters (lentic). We investigated patterns of dragonfly diversity using digital distribution maps and a phylogeny of 122 European dragonfly species, which we constructed by combining taxonomic and molecular data. We calculated total taxonomic distinctiveness and mean pairwise distances across 4192 50 × 50 km equal‐area grid cells as measures of phylogenetic diversity. We compared species richness with corrected weighted endemism and standardized effect sizes of mean pairwise distances or residuals of total taxonomic distinctiveness to identify areas with higher or lower phylogenetic diversity than expected by chance. Broken‐line regression was used to detect breakpoints in diversity–latitude relationships. Dragonfly species richness peaked in central Europe, whereas endemism and phylogenetic diversity decreased from warm areas in the south‐west to cold areas in the north‐east and with an increasing proportion of lentic species. Except for species richness, all measures of diversity were consistently higher in formerly unglaciated areas south of the 0°C isotherm during the Last Glacial Maximum than in formerly glaciated areas. These results indicate that the distributions of dragonfly species in Europe were shaped by both phylogenetic conservatism of thermal adaptations and differences between lentic and lotic species in the ability of post‐glacial recolonization/dispersal in concert with the climatic history of the continent. The complex diversity patterns of European dragonflies provide an example of how integrating climatic and evolutionary history with contemporary ecological data can improve our understanding of the processes driving the geographical variation of biological diversity.  相似文献   

16.
The biogeography of Cineraria (Asteraceae, Senecioneae) is assessed using a chorological approach in terms of its distribution, centres of diversity and endemism. Rare species are identified and categorised according to Rabinowitz's criteria and causes for rarity in the genus are investigated. The conservation status of the species is assessed according to IUCN criteria for Red List categories and compared to levels of rarity. The main phytogeographic affinity of Cineraria is Afromontane in association with seven recognised centres of endemism in South Africa, four in tropical Africa, in Ethiopia and in Madagascar. Fifteen species are endemic and six are near‐endemic to a specific centre of endemism or mountain range. Seventy four percent of Cineraria spp. are endemic to southern Africa with the centre of diversity in the KwaZulu‐Natal Midlands, South Africa. The rarest species number 11; of these eight are endangered or vulnerable according to IUCN Red Data Criteria and three are data deficient. Causes of rarity in Cineraria are related to narrow habitat specificity, notably soil or rock type and/or altitudinal range. Paired comparisons of the 11 rarest and commonest species reveal no convincing causal links to morphological, reproductive or life history strategy attributes in Cineraria. © 2009 University of the Witwatersrand, Botanical Journal of the Linnean Society, 2009, 160 , 130–148.  相似文献   

17.
Although critical for enabling in‐depth evolutionary, ecological, or conservation‐orientated studies, taxonomic knowledge is still scarce for many groups of organisms, including mammals of the order Carnivora. For some of these taxa, even basic aspects such as species limits and geographical distribution are still uncertain. This is the case for the Neotropical mustelid genus Galictis, considered one of the least studied carnivoran genera in the Americas. To address this issue, we performed a comprehensive assessment of morphological and molecular characters to test the number of species within Galictis, and to characterize their distinctiveness and evolutionary history. In addition, we reviewed and consolidated the available information on the taxonomy of this genus, so as to provide a historical framework upon which we could interpret our data. Our analyses demonstrated that two Galictis species can be clearly delimited and diagnosed using metric and nonmetric morphological characters as well as DNA sequences from mitochondrial and nuclear gene segments. On the basis of this clarified species‐level delimitation, we reassessed the geographical range of each Galictis taxon, identifying possible areas of sympatry between them. These results provide a solid taxonomic framework for Galictis, enabling the development of additional studies focusing on this poorly known taxon. © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167 , 449–472.  相似文献   

18.
Opportunism and specialization appear to be widespread in apoid wasps, although the factors affecting the diet preference (and thus explaining the degree of specialization) are still largely unknown. Four hypotheses that stressed the importance of the size, sex, habitat, and taxonomic identity of prey of the beetle‐hunting digger wasp, Cerceris rubida, were formulated and tested. The wasp population hunted for phytophagous beetles belonging to abundant families around the wasp nesting site. In practice, the prey appeared to be hunted only in two cultivated fields, thus habitat accounted for a majority of the observed diet. The size of wasps was furthermore correlated with the size of their prey, and thus this also accounted for the frequencies of hunted prey and the strong individual specialization for both taxa and size. However, in the exploited habitat, some species were significantly over‐hunted than expected and some other significantly avoided by the wasps, causing an unexpected major role of prey taxon on the probability of being hunted, over the other explanatory variables (body size, body shape, sex, availability). This contrasts to that found in other wasp species, which appear to select prey basing essentially on their ecology and size or their relative abundance (opportunism). The results obtained in the present study show that even an apparent ‘generalist’ predator may turn out to be taxonomically specialized. Together with a re‐evaluation of previous studies, our results further suggest that the effect of size constraints and the developmental plan of prey (holometaboulous versus hemimetabolous) may have promoted either taxonomic opportunism or specialization in different lineages of apoid wasps. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 544–558.  相似文献   

19.
The concepts of biogeographical regions and areas of endemism are briefly reviewed prior to a discussion of what constitutes a natural biogeographical unit. It is concluded that a natural biogeographical unit comprises a group of endemic species that share a geological history. These natural biogeographical units are termed Wallacean biogeographical units in honour of the biogeographer A.R. Wallace. Models of the geological development of Indonesia and the Philippines are outlined. Areas of endemism within Wallacea are identified by distributional data, and their relationship to each other and to the adjacent continental regions are evaluated using molecular phylogenies from the literature. The boundaries of these areas of endemism are in broad agreement with earlier works, but it is argued that the Tanimbar Islands are biologically part of south Maluku, rather than the Lesser Sundas, and that Timor (plus Savu, Roti, Wetar, Damar, and Babar) and the western Lesser Sundas form areas of endemism in their own right. Wallacean biogeographical units within Wallacea are identified by congruence between areas of endemism and geological history. It is concluded that although Wallacea as a whole is not a natural biogeographical region, neither is it completely artificial as it is formed from a complex of predominantly Australasian exotic fragments linked by geological processes within a complex collision zone. The Philippines are argued to be an integral part of Wallacea, as originally intended. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 193–212.  相似文献   

20.
Greece is characterized by high plant diversity (5800 species) and endemism (15.6%). This study attempts a first overall assessment of the taxonomy, distribution, traits and conservation status of the Greek endemic plants. The endemic species belong to 56 families and 242 genera. Most of the endemic plants have a narrow geographical and altitudinal distribution range. The southern floristic regions are richer in endemic species. The species area relationships for endemics (EARs) for island and continental floristic regions explain over 50% of the variation in number of species and are characterized by steep curves. Analysis of the distributional pattern of the endemics by similarity coefficients offers useful insights into the palaeogeography and biogeography of Greece. The endemic species occur at all altitudes, but the altitudinal distribution shows a predominance of local endemics at 0–600 m in the island regions and in higher zones in the continental regions. The life form spectra show a predominance of hemicryptophytes and chamaephytes. This trait seems indicative of their habitat and adaptive strategy and may be related to speciation processes. The overview of the conservation status of the Greek endemics indicates that over 40% of the taxa are threatened or near threatened. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 130–422.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号