首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9639篇
  免费   657篇
  国内免费   1900篇
  2024年   26篇
  2023年   189篇
  2022年   283篇
  2021年   361篇
  2020年   419篇
  2019年   388篇
  2018年   330篇
  2017年   331篇
  2016年   374篇
  2015年   362篇
  2014年   444篇
  2013年   780篇
  2012年   408篇
  2011年   469篇
  2010年   342篇
  2009年   581篇
  2008年   592篇
  2007年   554篇
  2006年   493篇
  2005年   507篇
  2004年   362篇
  2003年   346篇
  2002年   326篇
  2001年   257篇
  2000年   224篇
  1999年   203篇
  1998年   178篇
  1997年   195篇
  1996年   176篇
  1995年   173篇
  1994年   175篇
  1993年   161篇
  1992年   141篇
  1991年   119篇
  1990年   136篇
  1989年   106篇
  1988年   73篇
  1987年   61篇
  1986年   81篇
  1985年   97篇
  1984年   85篇
  1983年   43篇
  1982年   47篇
  1981年   34篇
  1980年   30篇
  1979年   33篇
  1978年   25篇
  1977年   40篇
  1976年   20篇
  1975年   6篇
排序方式: 共有10000条查询结果,搜索用时 33 毫秒
41.
Proton net efflux of wheat (Triticum aestivum L.) roots growing in sand culture or hydroponics was determined by measuring the pH values of the solution surrounding the roots by pH microelectrodes, by base titration and by color changes of a pH indicator in solid nutrient media. The proton net efflux was dependent on light, aeration, and source of nitrogen (NH 4 + , NO 3 ? ). Ammonium ions caused the highest proton efflux, whereas nitrate ions decreased the proton efflux. Iron deficiency had no significant effect on proton efflux. Replacement of ammonium by nitrate inhibited proton efflux, whereas the reverse enhanced proton extrusion. A lag period between changes in plant environment and proton efflux was observed. The proton net efflux occurred at the basal portion of the roots but not in the root tips or at the elongation zone. Under optimal conditions, proton efflux capacity reached a maximum value of 5.7 μmole H+ g?1 fresh weight h?1 with an average (between different measurements) of 3.4 μmole H+ g?1 fresh wth?1 whereas the pH value decreased to 3.2–3.7 and reached a minimal value of 2.9. Inhibition of ATPase activity by orthovanadate inhibited proton efflux. The results indicate that proton efflux in wheat roots is ammonium ion and light dependent and probably governed by ATPase activity.  相似文献   
42.
The marine bacteriumVibrio alginolyticus was found to possess the respiratory Na+ pump that generates an electrochemical potential of Na+, which plays a central role in bioenergetics ofV. alginolyticus, as a direct result of respiration. Mutants defective in the Na+ pump revealed that one of the two kinds of NADH: quinone oxidoreductase requires Na+ for activity and functions as the Na+ pump. The Na+ pump composed of three subunits was purified and reconstituted into liposomes. Generation of membrane potential by the reconstituted proteoliposomes required Na+. The respiratory Na+ pump coupled to the NADH: quinone oxidoreductase was found in wide varieties of Gramnegative marine bacteria belonging to the generaAlcaligenes, Alteromonas, andVibrio, and showed a striking similarity in the mode of electron transfer and enzymic properties. Na+ extrusion seemed to be coupled to a dismutation reaction, which leads to the formation of quinol and quinone from semi-quinone radical.  相似文献   
43.
By using sodium thioglycolate to dissolve the high amount of excreted stalk material in axenic cultures of the chemolithoautotrophic iron bacterium Gallionella ferruginea, the ultrastructure of Gallionella cells from pure cell suspensions could be studied without any loss of viability or disturbance by dense ferric stalk fibers, and compared with Thiobacillus ferrooxidans, also grown chemolithoautotrophically with ferrous iron as energy source. Both organisms were chemically fixed or freeze-etched. Particular structural differences between these iron-bacteria could be ascertained. G. ferruginea possesses intracytoplasmic membranes and soluble d-ribulose-1,5-bisphosphate-carboxylase, whereas T. ferrooxidans contains carboxysomes but no intracytoplasmic membranes; Gallionella forms poly--hydroxybutyrate and glycogen as storage material; T. ferrooxidans produces only glycogen. Both organisms also differ from each other with respect to the freeze fracture behaviour of the cell envelope layers. Whereas the cells of T. ferrooxidans exhibit a characteristic double cleavage, exposing the plasmic fracture face and exoplasmic fracture face of the outer membrane and cytoplasmic membrane, the exceptionally thin multilayered cell envelope of G. ferruginea revealed a particularly intimate association between the layers, resulting in a visualisation of the supramolecular organisation of only the inner fracture face of the cytoplasmic membrane. The results are discussed predominantly in relation to the extremely distinct environments of both organisms.  相似文献   
44.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   
45.
Archaeoglobus fulgidus is an extremely thermophilic archaebacterium that can grow at the expense of lactate oxidation with sulfate to CO2 and H2S. The organism contains coenzyme F420, tetrahydromethanopterin, and methanofuran which are coenzymes previously thought to be unique for methanogenic bacteria. We report here that the bacterium contains methylenetetrahydromethanopterin: F420 oxidoreductase (20 U/mg), methenyltetrahydromethanopterin cyclohydrolase (0.9 U/mg), formyltetrahydromethanopterin: methanofuran formyltransferase (4.4 U/mg), and formylmethanofuran: benzyl viologen oxidoreductase (35 mU/mg). Besides these enzymes carbon monoxide: methyl viologen oxidoreductase (5 U/mg), pyruvate: methyl viologen oxidoreductase (0.7 U/mg), and membranebound lactate: dimethylnaphthoquinone oxidoreductase (0.1 U/mg) were found. 2-Oxoglutarate dehydrogenase, which is a key enzyme of the citric acid cycle, was not detectable. From the enzyme outfit it is concluded that in A. fulgidus lactate is oxidized to CO2 via a modified acetyl-CoA/carbon monoxide dehydrogenase pathway involving C1-intermediates otherwise only used by methanogenic bacteria.Non-standard abbreviations APS adenosine 5-phosphosulfate - BV benzyl viologen - DCPIP 2,6-dichlorophenolindophenol - DMN 2,3-dimethyl-1,4-naphthoquinone - DTT DL-1,4-dithiothreitol - H4F tetrahydrofolate - H4MPT tetrahydromethanopterin - CH2 H4MPT, methylene-H4MPT - CH H4MPT, methenyl-H4MPT - Mes morpholinoethane sulfonic acid - MFR methanofuran - Mops morpholinopropane sulfonic acid - MV methyl viologen - Tricine N-tris(hydroxymethyl)-methylglycine - U mol product formed per min  相似文献   
46.
Twenty-seven oral strains of the genera Actinomyces (5), Bacteroides (3), and Streptococcus (19) were tested for aggregation by human whole saliva, as well as the effect of culture medium, Ca-ions, and bacteria concentration thereupon. Of the media tested, GF-broth gave rise to less interference by autoaggregation or higher aggregation titers than BHI and TSB, and was used throughout this study. In most cases, Ca-ions (1 mM) only enhanced the rate of induced aggregation, whereas raising the bacteria concentration increased the rate of both induce- and autoaggregation. The final titers, ranging from 1–64, were hardly affected by these parameters, except those of S. rattus HG 59 and S. mutans HG 199, which were respectively increased and decreased by Ca-ions. Saliva-induced aggregation was observed for 21 strains of A. viscosus, A. naeslundii, A. israelii, B. gingivalis, B. intermedius, S. cricetus, S. mutans, S. rattus, S. sanguis, and S. sobrinus, mostly within 15 min to 3 h. Seventeen of these strains also showed autoaggregation, usually well after the onset of induced aggregation. Any potential induced aggregation of B. gingivalis HG 91 was always masked by autoaggregation, as well as that of the S. mutans strains under a particular set of conditions. The aggregation rate and titer varied considerably in a mutually unrelated and strain-dependent way. These microtiterplate data were matched by the 5 spectrophotometric patterns observed for saliva-bacterial interaction, which moreover, gave the better differentiation between induced and autoaggregation. In conclusion, most strains tested can show rapid saliva-induced aggregation in a strain-dependent way, yet strongly affected by the experimental conditions and interference from autoaggregation.  相似文献   
47.
Glass-beads (diam. = 250 μm) were buried 10 cm deep in the sediment of a stream. After an exposure of eight weeks, bacterial densities on the beads varied between 2.7 × 105 and 2.4 × 107/cm2, and the length of the fungal mycelium between 0.2 and 5.3 mm/cm2. Bacterial densities did not show any correlation with the DOC content of the water, but were positively correlated with respiration on the beads. Fungal mycelium was negatively correlated with water temperature. Acid hydrolysis of stream-exposed beads released sugars and amino acids, whose combined carbon content exceeded that of the microbial cells by a factor of at least 4. Gut extracts of Gammarus tigrinus and Tipula caloptera released amino acids and sugars from stream-exposed beads.  相似文献   
48.
Bacterial populations were sampled at 37 sites in Mississippi River Pool 19. Bacterial biomass was calculated from direct epifluorescent cell counts. Bacterial production was estimated by incubating cells in situ in predator-free water inside membrane chambers and the frequency of dividing cells. Bacterial biomass in the water column ranged from 0.05 to 1.13 mg C -1, biomass in the vegetated areas of the pool was significantly higher than that in other habitats (P < 0.05, ANOVA). Biomass in sediments (to a depth of 10 cm) ranged from 24 to 1,073 mg C m-2, biomass in muddy sediments was significantly higher (P < 0.05) than that in sandy sediments. Biomass on the submersed surfaces of hydrophytes was 0.06–4.90 mg bacterial C g-1 dry weight of plant material. The vegetated habitat (water column plus vegetation) contained approximately 45 times the concentration of bacterial carbon found in nonvegetated main channel border areas and more than 100 times the concentration in the main river channel.Bacterial production rates in the water column of a vegetated section of the pool ranged from 0.03 to 3.28 g C m -3 s d -1 ; production (m -3) in a vegetation bed was 5.5 times that in the adjacent nonvegetated channel border areas and approximately 50 times that in the main channel. Aquatic macrophytes and associated microorganisms may be capable of providing significant inputs of carbon to secondary consumers in the pool during the summer low flow.  相似文献   
49.
Growth of Propionibacterium freudenreichii was studied with glycerol, lactate, and propionate as energy sources and a three-electrode poised-potential amperometric electrode system with hexacyanoferrate (III) as mediator. In batch culture experiments with glycerol and lactate as substrates, hexacyanoferrate (III) was completely reduced. Growth yields increased and the fermentation patterns were shifted towards higher acetate formation with increasing hexacyanoferrate (III) concentrations (0.25–8.0 mM). In experiments with regulated electrodes, glycerol, lactate, and propionate were oxidized to acetate and CO2, and the electrons were quantitatively transferred to the working electrode. Growth yields of 29.0, 13.4 and 14.2 g cell material per mol were calculated, respectively. The high cell yield obtained during propionate oxidation cannot be explained solely by substrate level phosphorylation indicating that additional energy was conserved via electron transport phosphorylation. Furthermore, this result indicated complete reversibility of the methyl-malonyl-CoA pathway in propionic acid bacteria.  相似文献   
50.
Cultures of Chromatium vinosum, devoid of sulfur globules, were supplemented with sulfide and incubated under anoxic conditions in the light. The concentrations of sulfide, polysulfides, thiosulfate, polythionates and elemental sulfur (sulfur rings) were monitored for 3 days by ion-chromatography and reversed-phase HPLC. While sulfide disappeared rapidly, thiosulfate and elemental sulfur (S6, S7 S8 rings) were formed. After sulfide depletion, the concentration of thiosulfate decreased fairly rapidly, but elemental sulfur was oxidized very slowly to sulfate. Neither polysulfides (S x 2– ), polythionates (SnO 6 2– , n=4–6), nor other polysulfur compounds could be detected, which is in accordance with the fact that sulfide-grown cells were able to oxidize polysulfide without lag. The nature of the intracellular sulfur globules is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号