首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

2.
The chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15, isolated from a soda lake in Kenya, was grown in a continuous culture, with thiosulfate or polysulfide as growth-limiting energy source and oxygen as electron acceptor, at pH 10 and at pH 0.6, 2 M and 4 M total sodium. The end product of the sulfur-compound oxidation was sulfate. Elemental sulfur and a cell-bound, polysulfide-like compound appeared as intermediates during substrate oxidation. In the thiosulfate-limited culture, the biomass yields and maximum specific growth rates decreased two and three times, respectively, with increasing sodium concentration. The apparent affinity constant measured for thiosulfate and polysulfide was in the micromolar range (Ks=6±3 M). The maintenance requirement (ms=8±5 mmol S2O32/g dry weight h–1) was in the range of values found for other autotrophic sulfur-oxidizing bacteria. The organism had a comparable maximum specific rate of oxygen uptake with thiosulfate, polysulfide, and sulfide, while elemental sulfur was oxidized at a lower rate. Glycine betaine was the main organic compatible solute. The respiration rates with different species of polysulfides (Sn2–) were tested. All polysulfide species were completely oxidized at high rates to sulfate. Overall data demonstrated efficient growth and sulfur compounds oxidation of haloalkaliphilic chemolithoautotrophic bacteria from soda lakes.Communicated by W.D. Grant  相似文献   

3.
During the oxidation of sulfide and thiosulfate purple and green sulfur bacteria accumulate globules of 'elemental' sulfur. Although essential for a thorough understanding of sulfur metabolism in these organisms, the exact chemical nature of the stored sulfur is still unclear. We applied sulfur K-edge X-ray absorption near edge spectroscopy (XANES) to probe the forms of sulfur in intact cells. Comparing XANES spectra of Allochromatium vinosum, Thiocapsa roseopersicina, Marichromatium purpuratum, Halorhodospira halophila and Chlorobium vibrioforme grown photolithoautotrophically on sulfide with reference probes (fingerprint method), we found sulfur chains with the structure R-S(n)-R. Evidence for the presence of sulfur rings, polythionates and anionic polysulfides in the sulfur globules of these bacteria was not obtained.  相似文献   

4.
Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M.  相似文献   

5.
Gallionella ferruginea is able to utilize Fe(II) and the reduced sulfur compounds sulfide and thiosulfate as electron donor and energy source. Tetrathionate and elemental sulfur, on the other hand, are not metabolized. In sulfide-O2 microgradient cultures G. ferruginea grows at the interface between the oxidizing and the reducing zones. Optimal growth depends on low oxygen and sulfide concentrations. Establishing within the gradient protects the bacterium from too high sulfide concentrations. G. ferruginea excretes extracellular polymeric substances (EPS). While in FeS-gradient cultures 2×106 cells/ml were obtained the bacterial mass could be increased to 1–3×108 cells/ml in shaken batch cultures using thiosulfate as substrate. A further increase of bacterial mass by adding an organic carbon source was not possible confirming that G. ferruginea is an obligate autotrophic organism. When growing on sulfide or thiosulfate the otherwise characteristic twisted stalk consisting of ferric hydroxide is lacking. It is thus shown to be a metabolic end product of Fe(II) oxidation rather than metabolically active cellular material.  相似文献   

6.
A variety of compounds were investigated for use as sulfur sources for the growth of methanogenic bacteria.Methanococcus (Mc.) deltae, Mc. maripaludis, Methanobacterium (Mb.) speciesGC-2B, GC-3B, andMMY, Methanobrevibacter (Mbr.) ruminantium, andMethanosarcina (Ms.) barkeri strain 227 grew well with sulfide, So, thiosulfate, or cysteine as sole sulfur source.Mbr. ruminatium was able to grow on SO 4 = or SO 3 = , andMs. barkeri strain 227 was able to grow on SO 3 = , but not on SO 4 = as a sole sulfur source.Mc. jannaschii grew with sulfide, So, thiosulfate or SO 3 = , but not on cysteine or SO 4 = as sole surface source.Mc. thermolithotrophicus, Mc. jannaschii, Mc. deltae, andMb. thermoautotrophicum strains Marburg and H were able to grow with methanethiol, ethanethiol,n-propanethiol,n-butanethiol, methyl sulfide, dimethyl sulfoxide, ethyl sulfide, or CS2 as a sulfur source, when very low levels (20–30 M) of sulfide were present; no growth occurred on 5–100 M sulfide alone. Methanethiol, ethanethiol, and methyl sulfide-using cultures produced sulfide during growth.  相似文献   

7.
Polysulfides formed through the breakdown of elemental sulfur or other sulfur compounds were found to be reduced to H2S by the hyperthermophilic archaebacterium Pyrococcus furiosus during growth. Metabolism of polysulfides by the organism was dissimilatory, as no incorporation of 35S-labeled elemental sulfur was detected. However, [35S]cysteine and [35S]methionine were incorporated into cellular protein. Contact between the organism and elemental sulfur is not necessary for metabolism. The sulfide generated from metabolic reduction of polysulfides dissociates to a strong nucleophile, HS, which in turn opens up the S8 elemental sulfur ring. In addition to H2S, P. furiosus cultures produced methyl mercaptan in a growth-associated fashion.  相似文献   

8.
Abstract Laminated microbial sediment ecosystems which develop in the upper tidal zone of Scapa Flow beaches, Orkney Islands were investigated with respect to depth profiles of chlorophyll a , bacteriochlorophyll a , pH, redox, oxygen and the following inorganic sulfur compounds: free sulfide, FeS, polysulfides, polythionates, elemental sulfur and thiosulfate. In addition, particle size distribution and light penetration were determined at all sampling locations.
Three main types of laminated sediment ecosystems were recognized, designated the 'classical' type (layer of cyanobacteria underlain by layer of purple sulfur bacteria), the 'single-layer' type (chlorophyll a containing organisms absent, purple sulfur bacteria at sediment surface), and the 'inverted' type (chlorophyll a containing organisms underlying purple sulfur bacteria). The dominant purple sulfur bacterium was Thiocapsa roseopersicina and Chromatium vinosum was observed less commonly. The principal cyanobacterium found in these sulfureta was Oscillatoria sp.
The depth horizon at which maximum populations of purple sulfur bacteria were recorded often did not coincide with the sulfide/oxygen interface but was located closer to the sediment surface where polysulfides, polythionates, elemental sulfur and occasionally thiosulfate were present. The structure of these sulfureta is discussed in relation to the chemolithotrophic growth capacities of Thiocapsa in the presence of oxygen.  相似文献   

9.
Respiring cells of the chemolithotrophic bacterium Thiomicrospira crunogena produced sulfur globules from the sulfane sulfur of thiosulfate below pH 7, and consumed the globules above pH 7. The switch in metabolism was immediate and reversible upon titration of the culture. The consumed sulfur globules remained in a membrane-bound form and were not oxidized unless the medium was depleted of thiosulfate. Sulfur globule production but not uptake was blocked by azide. Anoxia, thiol-binding agents, and inhibitors of protein synthesis blocked globule uptake. Transitory accumulations of sulfite and polythionates appeared to be reaction products of thiosulfate and sulfur globules. A model depicting the pH sensitivity and biochemistry of sulfur globule production and consumption is proposed.  相似文献   

10.
Endogenous and maximum respiration rates of nine purple sulfur bacterial strains were determined. Endogenous rates were below 10 nmol O2 · (mg protein · min)-1 for sulfur-free cells and 15–35 nmol O2 · (mg protein · min)-1 for cells containg intracellular sulfur globules. With sulfide as electron-donating substrate respiration rates were considerably higher than with thiosulfate. Maximum respiration rates of Thiocystis violacea 2711 and Thiorhodovibrio winogradskyi SSP1 (254.8 and 264.2 nmol O2 · (mg protein · min)-1, respectively) are similar to those of aerobic bacteria. Biphasic respiration curves were obtained for sulfur-free cells of Thiocystis violacea 2711 and Chromatium vinosum 2811. In Thiocystis violacea the rapid and incomplete oxidation of thiosulfate was five times faster than the oxidation of stored sulfur. A high affinity of the respiratoty system for oxygen (K m =0.3–0.9 M O2, V max=260 nmol O2 · (mg protein · min)-1 with sulfide as substrate, K m =0.6–2.4 M O2, V max=14–40 nmol O2 · (mg protein · min)-1 with thiosulfate as substrate), for sulfide (K m =0.47 M, V max=650 nmol H2S · (mg protein × min)-1, and for thiosulfate (K m =5–6 M, V max =24–72 nmol S2O 3 2- · (mg protein · min)-1 was obtained for different strains. Respiration of Thiocystis violacea was inhibited by very low concentrations of NaCN (K i =1.7 M) while CO concentrations of up to 300 M were not inhibitory. The capacity for chemotrophic growth of six species was studied in continuous culture at oxygen concentrations of 11 to 67 M. Thiocystis violacea 2711, Amoebobacter roseus 6611, Thiocapsa roseopersicina 6311 and Thiorhodovibrio winogradskyi SSP1 were able to grow chemotrophically with thiosulfate/acetate or sulfide/acetate. Chromatium vinosum 2811 and Amoebobacter purpureus ML1 failed to grow under these conditions. During shift from phototrophic to chemotrophic conditions intracellular sulfur and carbohydrate accumulated transiently inside the cells. During chemotrophic growth bacteriochlorophyll a was below the detection limit.  相似文献   

11.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   

12.
Oscillatoria amphigranulata is a fast-growing (3 doublings/day) cyanobacterium isolated from sulfide hot springs in New Zealand. Photosynthesis, as measured by incorporation of [14C]-HCO 3 - , was initially inhibited by 0.3–1.5 mM sulfide at pH 7.9–8.1. However, conversion to sulfide-dependent anoxygenic photosynthesis occurred in about 2 h or less under light intensities of 3–14 klx. Under the stimulation of higher light intensity (8–14 klx) a partial recovery of oxygenic photosynthesis also occurred. It was concluded that oxygenic photosynthesis was responsible for 21–42% of the total incorporation at sulfide concentrations of 1.0–0.3 mM, respectively. This contribution was suppressed at 1.5 mM sulfide and not elicited under lower light intensities (3–7 klx). As judged by the inhibitory effect of 10 g/ml chloramphenicol protein synthesis was required for attainment of both anoxygenic photosynthesis and photosystem II recovery. Sulfide could not be replaced by thiosulfate, elemental sulfur or dithionite as electron donors in photosynthesis, but elemental sulfur could serve as the sole assimilatory source of sulfur. Oxygenic photosynthesis was inhibited by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] or DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but sulfide relieved the effect of either inhibitor in adapted cells, indicating that electrons derived from sulfide enter the photosynthetic electron transport chain at a point beyond plastoquinone.Uncommon abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSPD disalicyclidene propanediamine - DNP-INT 2-4-dinitrophenyl ether of 2-iodo-4-nitrothymol - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - PPO 2,5-diphenyloxazole - POPOP 1,4-bis-2-(5-phenyl oxzolyl) benzene  相似文献   

13.
The isotope exchange between35S-labeled sulfur compounds of sulfate (SO4 2–), elemental sulfur (S0), polysulfide (Sn 2–), hydrogen sulfide (HS: H2S + HS + S2–), iron sulfide (FeS), and pyrite (FeS2) was studied at pH 7.6 and 20 °C in anoxic, sterile seawater. Isotope exchange was observed between S0, S2 2– HS, and FeS, but not between35S labeled SO4 2– or FeS2 and the other sulfur compounds. Polysulfide mediated the isotope exchange between S0 and bisulfide (HS). The isotope exchange between S0 and Sn 2–) reached 50% of equilibrium within < 2 min while exchange between S2 2– and HS approached equilibrium within 0.5-1 h. In all the experiments HS, revealed a fraction exchange from 0.79 to 1.00. Isotope exchange between S2– and FeS took place only via S2 2– and/or HS. The isotope exchange between iron sulfide and the other sulfur compounds was not complete within 24 h as shown by a fraction exchange of 0.07–0.83. This lack of equilibrium (fraction exchange < 1) was due to the isotope exchange between dissolved compounds and surfaces of sulfur particles. The isotopic exchange reactions limit the usefulness of radiotracers in process studies of the inorganic sulfur species. Exchange reactions will also affect the stable isotope distribution among the sulfur species. The kinetics of the isotopic exchange reactions, however, depend on both pH and temperature.  相似文献   

14.
Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.  相似文献   

15.
Thermophilic bacteria were isolated from a sulfide-rich, neutral hot spring in Iceland on gelrite minimal medium with 16 mM thiosulfate. The isolates were aerobic, obligate chemolithoautotrophs and used thiosulfate and sulfur as electron donors, producing sulfate from both substrates. No growth was observed with hydrogen as the sole electron donor, and no hydrogenase activity was detected. The cells were gram-negative and usually single, 4—5 μm long and 0.7 μm in diameter and formed sulfur globules after a few days of incubation. By SSU rRNA sequence comparisons, the bacterium was placed in the genus Hydrogenobacter with the closest relative to be Calderobacterium hydrogenophilum with 98.3% sequence similarity. This novel bacterium shows an ecological adaptation to high sulfide springs and is differentiated from its closest known relatives by lack of H2 oxidation, deposition of sulfur and lower growth temperature.  相似文献   

16.
The thermoacidophile and obligate elemental sulfur (S80)-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S80-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H2S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S80 and the biologically produced H2S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S80 was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S80 can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S80 provided as a solid phase in the medium or with S80 sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S80 sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S80 provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S80 particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S80 particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.  相似文献   

17.
A reversible room‐temperature aluminum–sulfur (Al‐S) battery is demonstrated with a strategically designed cathode structure and an ionic liquid electrolyte. Discharge–charge mechanism of the Al‐S battery is proposed based on a sequence of electrochemical, microscopic, and spectroscopic analyses. The electrochemical process of the Al‐S battery involves the formation of a series of polysulfides and sulfide. The high‐order polysulfides (Sx2?, x ≥ 6) are soluble in the ionic liquid electrolyte. Electrochemical transitions between S62? and the insoluble low‐order polysulfides or sulfide (Sx 2?, 1 ≤ x < 6) are reversible. A single‐wall carbon nanotube coating applied to the battery separator helps alleviate the diffusion of the polysulfide species and reduces the polarization behavior of the Al‐S batteries.  相似文献   

18.
M. I. H. Aleem 《Plant and Soil》1975,43(1-3):587-607
Summary Aspects of the biochemistry of the oxidation of inorganic sulfur compounds are discussed in thiobacilli but chiefly inThiobacillus denitrificans. Almost all of the thiobacilli (e.g. T. denitrificans, T. neapolitanus, T. novellus, andThiobacillus A 2) were capable of producing approximately 7.5 moles of sulfuric acid aerobically from 3.75 moles of thiosulfate per gram of cellular protein per hr. By far the most prolific producer of sulfuric acid (or sulfates) from the anaerobic thiosulfate oxidation with nitrates wasT. denitrificans which was capable of producing 15 moles of sulfates from 7.5 moles of thiosulfate with concomitant reduction of 12 moles of nitrate resulting in the evolution of 6 moles of nitrogen gas/g protein/hr. The oxidation of sulfide was mediated by the flavo-protein system and cytochromes ofb, c, o, anda-type. This process was sensitive to flavoprotein inhibitors, antimycin A, and cyanide. The aerobic thiosulfate oxidation on the other hand involved cytochromec : O2 oxidoreductase region of the electron transport chain and was sensitive to cyanide only. The anaerobic oxidation of thiosulfate byT. denitrificans, however, was severely inhibited by the flavoprotein inhibitors because of the splitting of the thiosulfate molecule into the sulfide and sulfite moieties produced by the thiosulfate-reductase. Accumulation of tetrathionate and to a small extent trithionate and pentathionate occurred during anaerobic growth ofT. denitrificans. These polythionates were subsequently oxidized to sulfate with the concomitant reduction of nitrate to N2. Intact cell suspensions catalyzed the complete oxidation of sulfide, thiosulfate, tetrathionate, and sulfite to sulfate with the stoichiometric reduction of nitrate, nitrite, nitric oxide, and nitrous oxide to nitrogen gas thus indicating that NO2 , NO, and N2O are the possible intermediates in the denitrification of nitrate. This process was mediated by the cytochrome electron transport chain and was sensitive to the electron transfer inhibitors. The oxidation of sulfite involved cytochrome-linked sulfite oxidase as well as the APS-reductase pathways. The latter was absent inT. novellus andThiobacillus A 2. In all of the thiobacilli the inner as well as the outer sulfur atoms of thiosulfate were oxidized at approximately the same rate by intact cells. The sulfide oxidation occurred in two stages: (a) a cellular-membrane-associated initial and rapid oxidation reaction which was dependent upon sulfide concentration, and (b) a slower oxidation reaction stage catalyzed by the cellfree extracts, probably involving polysulfides. InT. novellus andT. neapolitanus the oxidation of inorganic sulfur compounds is coupled to energy generation through oxidative phosphorylation, however, the reduction of pyridine nucleotides by sulfur compounds involved an energy-linked reversal of electron transfer. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974. Summary already inserted on p. 189 of the present volume.  相似文献   

19.
The capability of Phascolosoma arcuatum to detoxify sulfide in anaerobic conditions was examined. Sulfane sulfur, which underwent cold cyanolysis, was the major excretory end product of sulfide detoxification during anoxia. Thiosulfate was not excreted into the external medium. Instead, it was absorbed by P. arcuatum and its absorption was stimulated by the presence of sodium sulfide (Na2S) in the incubation medium. The effective formation and excretion of sulfane sulfur by P.␣arcuatum required the presence of both Na2S and sodium thiosulfate (Na2S2O3). Results obtained indicate that rhodanese might be involved in sulfide detoxification in this sipunculid. Rhodanese could act as a catalyst in the transfer of sulfur atoms from thiosulfate to HS. The body wall and the introvert were the main sites of sulfide detoxification. However, it is unlikely that epibiotic bacteria associated with the outside surface of the worm were involved in the detoxification process. A time-course study on the contents of thiosulfate and sulfane sulfur in the body wall of P. arcuatum incubated anaerobically in the presence of Na2S + Na2S2O3 verified that thiosulfate absorbed was utilized to detoxify sulfide to sulfane sulfur. Accepted: 24 October 1996  相似文献   

20.
Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present.Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C.The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号