首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24224篇
  免费   1360篇
  国内免费   2522篇
  2024年   42篇
  2023年   469篇
  2022年   451篇
  2021年   674篇
  2020年   804篇
  2019年   1115篇
  2018年   830篇
  2017年   881篇
  2016年   864篇
  2015年   738篇
  2014年   1195篇
  2013年   2133篇
  2012年   762篇
  2011年   1217篇
  2010年   818篇
  2009年   1215篇
  2008年   1280篇
  2007年   1241篇
  2006年   1158篇
  2005年   975篇
  2004年   901篇
  2003年   826篇
  2002年   730篇
  2001年   555篇
  2000年   461篇
  1999年   457篇
  1998年   421篇
  1997年   389篇
  1996年   416篇
  1995年   375篇
  1994年   369篇
  1993年   337篇
  1992年   351篇
  1991年   272篇
  1990年   283篇
  1989年   222篇
  1988年   206篇
  1987年   220篇
  1986年   163篇
  1985年   211篇
  1984年   211篇
  1983年   136篇
  1982年   180篇
  1981年   124篇
  1980年   119篇
  1979年   90篇
  1978年   46篇
  1977年   47篇
  1976年   46篇
  1975年   24篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
81.
The phosphate metabolism of Platymonas subcordiformis was investigated by 31P-NMR spectroscopy with special attention on the effect of external pH. Glycolyzing cells and cells energized by respiration or photosynthesis gave spectra dependent upon their metabolic state. The transition from deenergized to energized states is accompanied by a shift of cytoplasmic pH from 7.1–7.4, an increase of ATP level and-in well energized cells-the appearance of a new signal tentatively assigned to phosphoarginine.The spectra remain stable over a wide range of external pH. Cytoplasmic pH is well regulated in respiring cells for external pH in the range 5.3–12.3. The typical 0.4 units difference of internal pH in energized as compared to deenergized cells is not affected by external pH in the range 6–12. The intensity of a signal attributed to PEP is markedly increased at high external pH. pH regulation is less efficient below external pH of 6 in deenergized cells. Below pH 3.8 oxidative phosphorylation ceases. Upon raising cytoplasmic pH to 7.4 in deenergized cells polyphosphate chains start to disintegrate.Abbreviations PEP Phosphoenolpyruyate - P i inorganic phosphate - PP i inorganic pyrophosphate - poly P polyphosphates - PP-1, PP-2, PP-3 terminal, second, and third phosphate residue of polyphosphates - PP-4 core phosphate residues of polyphosphates - pH i , pH o internal (cytoplasmic) and external pH - NTP/NDP nucleotide triphosphate/-diphosphate - S/N signal to noise ratio  相似文献   
82.
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F M, 692 and F M, 734). The response of instantaneous fluorescence at 692 nm (F O, 692) was complex. In leaves of some species F O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F V/F M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F O, 692 and F M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F O, 692 and F M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F V/F M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa kilodalton - LHC-II light-harvesting chlorophyll-protein complex - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - F O, F M, F V instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield of O2 evolution (absorbed light) C.I.W.-D.P.B. Publication No. 925  相似文献   
83.
Pisum sativum L. cv. Bodil was infected with various strains of Rhizobium leguminosarum (R501, 128c53, B155, 18a or 1044). The Rhizobium genotype influenced the activity of the plant enzyme phosphoenoipyruvate (PEP) carboxylase (EC 4.1.1.31), and the assimilation of fixed N in the root nodules. The specific activity of nodule PEP carboxylase was lowest in the symbioses, which accumulated the least total N (R501 and 128c53). The root bleeding sap of the less effective symbioses contained a lower proportion of asparagine and a higher proportion of glutamine than the more effective symbioses (B155,18a and 1044). The N yield of the symbioses was related neither to the net respiratory CO2 evolution of the root system nor to the nitrogenase linked nodule respiration. The lower yielding symbioses accumulated a larger proportion of the fixed N in the nodules due to a higher proportion of total dry weight contained in the nodule tissue. However, the concentration of soluble protein in the nodules of the lower-yielding symbioses was lower than that recorded for the higher yileding symbioses. The effect of the Rhizobium strains on N yield was maintained at maturity, and reflected in seed yields.  相似文献   
84.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   
85.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   
86.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   
87.
Summary A 8.3 /ml 6-thioguanine (6TG)-resistant strain was isolated from a rat tetraploid cell line by step-by-step selection in 6TG-medium. In the 6TG-resistant cell population 51% of the cells were tetraploid and 35% of the cells were hypertetraploid, i.e., one chromosome more than a tetraploid. The 6TG-resistant strain grew very well in RPMI 1640 medium with intervals of three days between subcultures. The 6TG-resistant cells all have a homogeneously staining region (HSRs) in one of the X chromosomes which do not stain after chromosome C-banding. They also possess a higher NORs activity and much lower frequency of sister chromatid exchanges (SCE). When the 6TG-resistant RCT cells were subcultured in 6TG-free medium for three days, their SCE frequency did not change. 5-bromodeoxyuridine (BrdU) significantly suppressed the NORs activity for both 6TG-resistant cells and 6TG-sensitive cells (P<0.001).Abbreviations 6TG 6-thioguanine - HSRs homogeneously staining region - NORs nucleolar organizer region - SCE sister chromatid exchange - BrdU 5-bromodeoxyuridine - HPRT Hypoxanthine phosphoribosyl transferase  相似文献   
88.
When detergent-derived photosystem II (PSII) membranes are treated with CaCl2 to remove the three extrinsic proteins associated with the O2-evolving complex, the resulting membranes (CaPSII) can still catalyze water oxidation if sufficient Ca2+ and Cl- are present. When CaPSII membranes are exposed to single turnover flashes on an O2 rate electrode, anomalous O2 is produced by the first two flashes. The addition of catalase to the membrane suspension completely inhibits O2 produced by the first two flashes, but not by subsequent flashes. Exogenous H2O2 stimulates anomalous O2 production by the first few flashes in CaPSII membranes, but not in control PSII membranes. Diuron (DCMU) does not inhibit H2O2-stimulated O2 production by the first flash. However, it does inhibit the O2 yield of all subsequent flashes, indicating that all flash-induced O2 signals in CaPSII membranes are dependent on photosystem II electron transport. H2O2 stimulation of O2 yields is inhibited in Tris-, heat-, and EDTA-(ethylenediaminetetraacetic acid)-treated CaPSII. In the presence of high salt, H2O2 (but not EDTA) treatment of CaPSII, extracts Mn functional in normal photosynthetic O2 evolution. The addition of exogenous Mn2+ reconstitutes anomalous O2 production in Tris-and H2O2/EDTA-treated CaPSII preparations but only in the presence of H2O2. Anomalous H2O2-stimulated O2 production can be observed both with a Clark electrode (steady state) and an O2 rate electrode (flash sequence). The mechanism involves electron donation from H2O2, mediated by free Mn2+, to PSII, and the 33-kDa extrinsic protein under some conditions can block this process. Since H2O2 can remove functional Mn from CaPSII membranes, its presence can convert functional Mn to the Mn2+ mediator state required for anomalous O2 production. EDTA binds Mn in CaPSII disrupted by H2O2 and prevents anomalous O2 evolution.Abbreviations CaPSII a PSII preparation washed with approximately 1M CaCl2 - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminetetraacetic acid - MES 2-[N-morpholino]-ethanesulfonic acid - PSII a detergent-derived photosystem II membrane preparation - RC reaction center - Tris tris(hydroxymethyl)-aminomethane - Yn oxygen rate electrode flash yield resulting from the nth flash of a sequence of single turnover flashes of light Operated by the Midwest Research Institute for the U.S. Department of Energy under contract DE-AC02-83CH10093.  相似文献   
89.
The scavenger effect of melanin and of superoxide dismutase (SOD) activity on superoxide anion has been shown. In this work we show the relationship between melanin content and SOD activity in livers containing different quantities of melanin which were taken from various species of animals. The mitochondrial SOD activity disappears when the melanin content in the liver is very high; moreover it increases, in the liver of various species of animals examined, proportionally to the decrease of melanin content. No significant variation of the SOD activity localized in the soluble fraction has been detected when related to the melanin content. We think that in the pigmented liver the antioxidant activity of the melanin could mimic part of the function of SOD. The loss of Mn SOD activity could be mediated by a low intracellular level of superoxide anion due to the scavenger effect of melanin on superoxide anion; in fact, it is well known that the biosynthesis of Mn SOD is induced by intracellular levels of superoxide anion.  相似文献   
90.
Summary Reaction ofDl-serine and adenosine-5-phosphorimidazolide in the presence of adenosine-5-(O-methylphosphate) and imidazole resulted in the stereoselective synthesis of the aminoacyl nucleotide ester 2(3)-O-seryl-adenosine-5-(O-methylphosphate). The enantiomeric excess ofd-serine incorporated into 2(3)-O-seryl-adenosine-5-(O-methylphosphate) was about 9%. Adenylyl-(5N)-serine and an unknown product also incorporated an excess ofd-serine; however, serylserine showed an excess ofl-serine. The relationship of these results to the origin of the biological pairing ofl-amino acids and nucleotides containingd-ribose is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号