首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bleeding sap composition, dry matter production and nitrogen distribution in pea ( Pisum sativum L. cv. 'Bodil') grown with and without nitrate and nodulated with either Rhizobium leguminosarum strain 128c53 or strain 1044 were compared. Nitrate increased the total dry matter production of both symbioses, but decreased both the proportions of below-ground dry matter to total dry matter production and nodule dry matter to total below-ground dry matter production. The total dry matter yield and N-accumulation was greater in the symbiosis with strain 1044, whereas the accumulation of N in the roots plus nodules relative to the total N-accumulation was greater with strain 128c53 due to a higher production of nodule tissue. The root bleeding sap of the symbiosis with the greater yield (strain 1044) contained high levels of asparagine and aspartic acid. In the 128c53 symbiosis, glutamine plus bomoserine accounted for a higher percentage of the organic solutes transporting newly assimilated nitrogen from the root system than in the association with 1044. The Rhizobium strain effect on amino compound composition of the bleeding sap may indicate an influence of the bacteroids on either the N-assimilatory enzyme system in the plant cytosol, or on the pools of the Krebs cycle intermediates or related compounds in the nodules.  相似文献   

2.
Vance, C. P., Reibach, P. H. and Pankhurst, C. E. 1987. Symbiotic properties of Lotus pedunculatus root nodules induced by Rhizobium loti and Bradyrhizobium sp. ( Lotus ).
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N2 fixed)-1] of nodules induced by CC814s and NZP2037 were 7.1 and 16.6, respectively. Nodule enzymes of carbon and nitrogen assimilation reflected the disparity of the two sym-bioses. Xylem sap of the symbiosis with the higher yield contained a higher concentration of asparagine [9.86 μmol (ml xylem sap)'] than did the lower yielding symbiosis [5.80 umol (ml xylem sap)"']. Nodule CO2 fixation was directly linked to nodule N assimilation in both symbioses. The results indicate that the difference between the two symbioses extend to nodule N and C assimilation and whole plant N transport. The data support a role for host plant modulation of bacterial efficiency and assimilation of fixed N.  相似文献   

3.
In vivo CO2 fixation and in vitro phosphoenolpyruvate (PEP) carboxylase levels have been measured in lupin (Lupinus angustifolius L.) root nodules of various ages. Both activities were greater in nodule tissue than in either primary or secondary root tissue, and increased about 3-fold with the onset of N2 fixation. PEP carboxylase activity was predominantly located in the bacteroid-containing zone of mature nodules, but purified bacteroids contained no activity. Partially purified PEP carboxylases from nodules, roots, and leaves were identical in a number of kinetic parameters. Both in vivo CO2 fixation activity and in vitro PEP carboxylase activity were significantly correlated with nodule acetylene reduction activity during nodule development. The maximum rate of in vivo CO2 fixation in mature nodules was 7.9 nmol hour−1 mg fresh weight−1, similar to rates of N2 fixation and reported values for amino acid translocation.  相似文献   

4.
Summary Studies of the C and N economy of a range of temperate and tropical legume/Rhizobium symbioses indicate considerable variation (up to three-fold) in the cost of N2 fixation. Comparisons between and within symbioses indicate that the proportion of net photosynthate utilized in nodule functioning varies almost ten-fold from as low as 3% to as high as 25%. Factors possibly responsible for variation in efficiency of C use in nodules and in the proportioning of translocated photosynthetic products to nodules are discussed.  相似文献   

5.
6.
Nodule phosphoenolpyruvate carboxylase: a review   总被引:3,自引:0,他引:3  
Recent data concerning the fixation of CO2 and the functioning of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) in legume, nodules are reviewed. The activites of N2 fixation (acctylene reduction) and PEP carboxylase are correlated Activities of PEP carboxylase are always higher in nodules than in roots. PEP carboxylase is located in the cytosol of the plant part of the nodules. When nodules are fed with 14CO2, radioactivity appears predominantly in malate and aspartate. The resolution of isoenzymes of PEP carboxylase shows one more band in nodules than in related roots. The role of PEP carboxylase in nodule metabolism is discussed.  相似文献   

7.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

8.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

9.
The activities of phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.3.1) have been investigated in various organs of young nodulated Alnus glutinosa. The root nodules exhibited the highest specific enzyme activity when compared with the one in roots and leaves. Furthermore, in the root nodules the PEP carboxylase was predominantly localized in the cytosol of the large cortical cells containing the endophyte vesicles.Abbreviations PEP carboxylase phosphoenolpyruvate carboxylase - MDH malate dehydrogenase - PVP polyvinylpyrrolidone - PBS phosphate buffer saline  相似文献   

10.
Physiological and biochemical parameters of the supernodulating pea (Pisum sativum L.) mutant nod3 were compared to those of its wild-type parent cv. Rondo in a nil nitrate environment. Plants of cv. Rondo produced more biomass and accumulated more N than plants of nod3. Accordingly, seed yield of the wild type was twice that of the supernodulating mutant. Although the nodule number of nod3 was 10-fold that of cv. Rondo, the nodule mass of nod3 was only twice that of cv. Rondo as individual nodules were smaller in nod3 than in cv. Rondo. The maximum rate of acetylene reduction activity, determined in an open flow-through gas system, was higher in the wild type than in nod3 when expressed on a nodule dry weight basis. However, when expressed on a whole plant basis, the nitrogenase activity (acetylene reduction) was similar in the two symbioses. The net carbon costs of nitrogenase activity was 25% lower in nod3 than in cv. Rondo. An equal proportion of the net CO2 efflux from the root system was for growth and maintenance of the tissue in the two symbioses. However, growth and maintenance respiration was higher in nod3 than in cv. Rondo per gram dry weight of the nodulated root system. The nodules of nod3 had a reduced soluble protein concentration as compared to those of the wild type. The specific activities of nodule glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.14) and asparagine synthetase (EC 6.3.5.4) were lower in nod3 than in cv. Rondo. The root bleeding sap of nod3 contained lower amounts of glutamine and higher amounts of asparagine than that of cv. Rondo. The results suggest that the use of carbon directly related to the dinitrogen fixation and nitrogen assimilation may be less in nod3 than in cv. Rondo, and that there may be differences between the two symbioses in the pathway for assimilation of fixed nitrogen.  相似文献   

11.
12.
Common bean plants inoculated with salt-tolerant Rhizobium tropici wild-type strain CIAT899 formed a more active symbiosis than did its decreased salt-tolerance (DST) mutant derivatives (HB8, HB10, HB12 and HB13). The mutants formed partially effective (HB10, HB12) or almost ineffective (HB8, HB13) nodules (Fix(d)) under non-saline conditions. The DST mutant formed nodules that accumulated more proline than did the wild-type nodules, while soluble sugars were accumulated mainly in ineffective nodules. Under salt stress, plant growth, nitrogen fixation, and the activities of the antioxidant defense enzymes of nodules were affected in all symbioses tested. Overall, mutant nodules showed lower antioxidant enzyme activities than wild-type nodules. Levels of nodule catalase appeared to correlate with symbiotic nitrogen-fixing efficiency. Superoxide dismutase and dehydroascorbate reductase seem to function in the molecular mechanisms underlying the tolerance of nodules to salinity.  相似文献   

13.
The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO2 and H2. Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 ± 0.26 (standard error) milligrams C as CO2 and negligible H2 were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 ± 0.28 milligrams C as CO2, 0.22 ± 0.05 milligrams H2, and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO2. The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of 14CO2 fixation by detached nodules were greater for the cowpea symbiosis (0.56 ± 0.06 and 0.22 milligrams C as CO2 fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 ± 0.02 and 0.01 milligrams C as CO2 fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes.  相似文献   

14.
Uricase (urate oxidase, EC 1.7.3.3) activity and nodule-specific uricase II (nodulin-35) were detected in the nodules from a number of legume: Rhizobium symbioses ( Vigna unguiculata (L.) Walp., Phaseolus vulgaris L., and Kennedia coccinea Vent.) in the Phaseoleae, as well as in those of Robinia pseudoacacia L. which belongs to the tribe Robineae. Neither uricase activity nor nodulin-35 was detected in nodules from Lupinus angustifolius L., an amide-forming symbiosis of the tribe Genisteae. Nodules of R. pseudoacacia also showed high levels of allantoinase (EC 3.5.2.5) activity but activity of enzymes earlier in the pathway of ureide synthesis (xanthine dehydrogenase, EC 1.2.1.37; inosine monophosphate dehydrogenase, EC 1.2.1.14; and xanthosine nucleosidase, EC 3.2.2.1) could not be detected. Analysis of transport fluids (xylem, phloem and nodule exudates) from R. pseudoacacia found that asparagine, and, to a lesser extent, glutamine were the major translocated nitrogenous solutes. Ureides accounted for, at most, 2.6% of the N in transport fluids (tracheal xylem sap) and in nodule exudate, 0.1%. In common with nodules of the ureide-forming symbioses, those of R. pseudoacacia contained a high proportion of uninfected interstitial cells (53.7 ± 2.3%) in the central N2-fixing tissue whereas in L. angustifolius only 2.5 ± 0.4% of cells in this tissue were uninfected. These data have been interpreted to indicate that expression of nodule-specific uricase is related to the differentiation of uninfected interstitial cells in nodules and not to the synthesis of ureides.  相似文献   

15.
The relationship between photosynthesis of soybean and nitrogen fixation of the nodules by symbiotic Rhizobium was studied. The contents of total nitrogen and chlorophyll, the net photosynthetic rate and seed yield of soybean were much higher in either hydroponically cultivated or field-grown plants inoculated with Rhizobium B16–11C (or Clark nodulating strain) than in control without inoculation (or Clark non-nodulating strain). These results show that the symbiotic nitrogen fixation has a beneficial effect on photosynthesis. However, the effect was indirect and slow so that there was no change in the net photosynthetic rate of the soybean leaves until three clays after removing nodules from the soybean roots. On the other hand, decreasing the photosynthate supply to nodule by shade, defoliation or shoot removal of the soybean, the nodule activity declined significantly. It seems that the supply of photosynthate to root nodule is a limiting factor for symbiotic nitrogen fixation. However, the diurnal variation of the nodule activity could not be explained by change neither in the contents of sucrose and starch of the root nodules nor in the ambient temperature. The factor controlling the diurnal variation deserves further study.  相似文献   

16.
rRNA gene sequencing and PCR assays indicated that 215 isolates of root nodule bacteria from two Mimosa species at three sites in Costa Rica belonged to the genera Burkholderia, Cupriavidus, and Rhizobium. This is the first report of Cupriavidus sp. nodule symbionts for Mimosa populations within their native geographic range in the neotropics. Burkholderia spp. predominated among samples from Mimosa pigra (86% of isolates), while there was a more even distribution of Cupriavidus, Burkholderia, and Rhizobium spp. on Mimosa pudica (38, 37, and 25% of isolates, respectively). All Cupriavidus and Burkholderia genotypes tested formed root nodules and fixed nitrogen on both M. pigra and M. pudica, and sequencing of rRNA genes in strains reisolated from nodules verified identity with inoculant strains. Inoculation tests further indicated that both Cupriavidus and Burkholderia spp. resulted in significantly higher plant growth and nodule nitrogenase activity (as measured by acetylene reduction assays) relative to plant performance with strains of Rhizobium. Given the prevalence of Burkholderia and Cupriavidus spp. on these Mimosa legumes and the widespread distribution of these plants both within and outside the neotropics, it is likely that both beta-proteobacterial genera are more ubiquitous as root nodule symbionts than previously believed.  相似文献   

17.
Pyruvate kinase (PK, EC 2.7.1.40) was partially purified from the plant cytosolic fraction of N2-fixing soybean ( Glycine max [L.] Merr.) root nodules. The partially purified PK preparation was completely free of contamination by phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), the other major phospho enol pyruvate (PEP)-utilizing enzyme in legume root nodules. Latency experiments with sonicated nodule extracts showed that Bradyrhizobium japonicum bacteroids do not express either PK or PEPC activity in symbiosis. In contrast, free-living B. japonicum bacteria expressed PK activity, but not PEPC activity. Antibodies specific for the cytosolic isoform of PK from castor bean endosperm cross-reacted with a 52-kDa polypeptide in the partially purified PK preparation. At the optimal assay pH (pH 8.0 for PEPC and pH 6.9 for PK) and in the absence of malate, PEPC activity in crude nodule extracts was 2.6 times the corresponding PK activity. This would tend to favour PEP metabolism by PEPC over PEP metabolism by PK. However, at pH 7.0 in the presence of 5 m M malate, PEPC activity was strongly inhibited, but PK activity was unaffected. Thus, we propose that PK and PEPC activity in legume root nodules may be coordinately regulated by fluctuations in malate concentration in the plant cytosolic fraction of the bacteroid-containing cells. Reduced uptake of malate by the bacteroids, as a result of reduced rates of N2 fixation, may favour PEP metabolism by PK over PEP metabolism by PEPC.  相似文献   

18.
Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.  相似文献   

19.
The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.  相似文献   

20.
Reduction of ferric leghemoglobin in soybean root nodules   总被引:1,自引:0,他引:1       下载免费PDF全文
Lee KK  Klucas RV 《Plant physiology》1984,74(4):984-988
Callus tissue cultures were developed from apical meristem regions of tumor-like ineffective root nodules of alfalfa. Callus growth was a function of tissue source and hormone composition and concentration. Callus derived from ineffective nodules also were shown not to contain Rhizobium meliloti.

Glutamate dehydrogenase, glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase and phosphoenolpyruvate carboxylase activities were present in callus cultures and in the respective nodule source used for callus induction. The mean specific activity of all enzymes evaluated was higher in callus cultures than in ineffective nodules. Quantitative but not qualitative differences in enzyme activities were evident between ineffective nodules and callus derived from these nodules. Tissue cultures derived from ineffective nodules may provide a model system to evaluate host plant-Rhizobium interactions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号