首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13354篇
  免费   897篇
  国内免费   713篇
  2024年   27篇
  2023年   165篇
  2022年   181篇
  2021年   296篇
  2020年   408篇
  2019年   492篇
  2018年   489篇
  2017年   392篇
  2016年   377篇
  2015年   423篇
  2014年   747篇
  2013年   1297篇
  2012年   461篇
  2011年   749篇
  2010年   422篇
  2009年   647篇
  2008年   680篇
  2007年   748篇
  2006年   603篇
  2005年   597篇
  2004年   492篇
  2003年   482篇
  2002年   391篇
  2001年   296篇
  2000年   228篇
  1999年   213篇
  1998年   227篇
  1997年   210篇
  1996年   174篇
  1995年   188篇
  1994年   168篇
  1993年   184篇
  1992年   185篇
  1991年   140篇
  1990年   108篇
  1989年   132篇
  1988年   105篇
  1987年   94篇
  1986年   73篇
  1985年   102篇
  1984年   110篇
  1983年   63篇
  1982年   86篇
  1981年   61篇
  1980年   47篇
  1979年   51篇
  1978年   41篇
  1977年   32篇
  1976年   26篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
991.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   
992.
Previous studies have demonstrated that exposure to convulsive doses of hyperbaric oxygen (HBO) increases sensitivity to seizures in re-exposures. Because brain derived neurotrophic factor (BDNF) is induced after a variety of seizures and increases cell excitability, it may contribute to the mechanism of sensitization. In this study, a fast induction in BDNF mRNA 2 hr after seizures and a temporary increase in BDNF protein 1 day after seizures induced by 100% O2 at 5 atm (gauge pressure) were demonstrated in the rat cortex. To determine whether an elevation in BDNF protein level can modify sensitivity to the toxic effect of HBO, recombinant BDNF (12 g) was injected into cerebral ventricles 30 min prior to exposure. Administration of exogenous BDNF significantly shortened latent time to seizures in HBO exposures. We propose that upregulation of BDNF expression in the brain after seizures may contribute to sensitization to HBO toxicity.  相似文献   
993.
Epidemiological studies have shown that particulate air pollution is linked to the increase of morbidity and mortality due to respiratory diseases. Diesel exhaust particles (DEPs), which are the most important part of PM2.5 in Western European and Japanese urban areas, have been suspected. The mechanisms of proinflammatory response induced by DEPS were elucidated using a human epithelial cell line (16-HBE). It has been shown that DEPs can be phagocytosed by HBE cells, inducing the release of cytokines. MAP kinase pathways (i.e., ERK1/2 and P38) were triggered as well as the activation of the nuclear factor NF-κB. Reactive oxygen species (ROS) were strongly incriminated in this response because DEPs induce the increase of intracellular hydroperoxides and antioxidants inhibit the release of DEP-induced cytokines, the activation of MAP kinases and NF-κB. Organic compounds adsorbed on DEPs seemed to be involved in the response and the production of ROS. Moreover, we have demonstrated that DEPs can activate CYP1A1 in HBE cells. These experimental results give biological plausibility to the epidemiological findings. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
994.
Effects of oxygen on engineered cardiac muscle   总被引:6,自引:0,他引:6  
Concentration gradients associated with the in vitro cultivation of engineered tissues that are vascularized in vivo result in the formation of only a thin peripheral tissue-like region (e.g., approximately 100 microm for engineered cardiac muscle) around a relatively cell-free interior. We previously demonstrated that diffusional gradients within engineered cardiac constructs can be minimized by direct perfusion of culture medium through the construct. In the present study, we measured the effects of medium perfusion rate and local oxygen concentration (p(O2)) on the in vitro reconstruction of engineered cardiac muscle. Neonatal rat cardiomyocytes were seeded onto biodegradable polymer scaffolds (fibrous discs, 1.1 cm diameter x 2 mm thick, made of polyglycolic acid, 24 x 10(6) cells per scaffold). The resulting cell-polymer constructs were cultured for a total of 12 days in serially connected cartridges (n = 1-8), each containing one construct directly perfused with culture medium at a flow rate of 0.2-3.0 mL/min. In all groups, oxygen concentration decreased due to cell respiration, and depended on construct position in the series and medium flow rate. Higher perfusion rates and higher p(O2) correlated with more aerobic cell metabolism, and higher DNA and protein contents. Constructs cultured at p(O2) of 160 mm Hg had 50% higher DNA and protein contents, markedly higher expression of sarcomeric alpha-actin, better organized sarcomeres and cell junctions, and 4.5-fold higher rate of cell respiration as compared to constructs cultured at p(O2) of 60 mm Hg. Contraction rates of the corresponding cardiac cell monolayers were 40% higher at p(O2) of 160 than 60 mm Hg. The control of oxygen concentration in cell microenvironment can thus improve the structure and function of engineered cardiac muscle. Experiments of this kind can form a basis for controlled studies of the effects of oxygen on the in vitro development of engineered tissues.  相似文献   
995.
A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.  相似文献   
996.
Microscale processing techniques would be a useful tool for the rapid and efficient collection of biotransformation kinetic data as a basis for bioprocess design. Automated liquid handling systems can reduce labor intensity while the small scale reduces the demand for scarce materials such as substrate, product, and biocatalyst. Here we illustrate this concept by establishing the use of several microwell formats (96-round, 96-deep square and 24-round well microtiter plates) for quantification of the kinetics of the E. coli TOP10 [pQR239] resting cell catalyzed Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2en-6-one using glycerol as a source of reducing power. By increasing the biocatalyst concentration until the biotransformation rate was oxygen mass-transfer limited we can ensure that kinetic data collected are in the region away from oxygen limitation. Using a 96-round well plate the effect of substrate (bicyclo[3.2.0]hept-2en-6-one) concentration on the volumetric CHMO activity was examined and compared to data collected from 1.5-L stirred-tank experiments. The phenomenon and magnitude of substrate inhibition, observed at the larger scale, was accurately reproduced in the microwell format. We have used this as an illustrative example to demonstrate that under adequately defined conditions, automated microscale processing technologies can be used for the collection of quantitative kinetic data. Additionally, by using the experimentally determined stoichiometry for product formation and glycerol oxidation, we have estimated the maximum oxygen transfer rates as a function of well geometry and agitation rate. Oxygen-transfer rates with an upper limit of between 33 mmol. L(-1). h(-1) (based solely on product formation) and 390 mmol. L(-1). h(-1) (based on product formation and glycerol oxidation) were achieved using a 96-square well format plate shaken at 1300 rpm operated with a static surface area to volume ratio of 320 m(2). m(-3).  相似文献   
997.
We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. Earlier work identified CYP2E1, CYP2B1/2 and CYP1A2 as activating enzymes necessary for hepatotoxicity in rat. In order to extend an existing PBPK model for rat to include a capability for extrapolation to humans, it is necessary to evaluate quantitatively the principal metabolic pathways in both species. We have conducted in vitro experiments using recombinant preparations of the three rat CYP isoenzymes mentioned above and for CYP2C11 and CYP3A1 as well. Similar experiments have been performed with human recombinant isoenzymes for CYP2E1, CYP1A2, CYP2A6, CYP2B6, CYP2D6 and CYP3A4. Results indicate that the principal metabolizing enzymes in rat are those identified previously, CYP2E1, CYP2B1/2 and CYP1A2. CYP3A1 may also have some activity. In human, CYP2E1, CYP1A2 and CYP3A4 show substantial activity, and CYP2A6 also measurably metabolizes BDCM. In both species, CYP2E1 is the low K(m) isoenzyme, with K(m) approximately 27-fold lower than those for the isoenzymes with the next lowest K(m). In addition, the metabolic parameters, K(m) and k(cat), for rat and human CYP2E1 were nearly identical. The metabolic parameters for CYP1A2, the only other isoenzyme active in both species, were not similar across species. In addition, calculations based on the kinetic constants obtained are compared to results from two in vivo experiments to show that the in vitro kinetic data is relevant to in vivo exposures. We conclude that although several CYPs metabolize BDCM, at low concentration/exposure, BDCM metabolism is dominated by CYP2E1 in both rat and human, but that other isoenzymes can be important at higher concentrations. We further conclude that the kinetic data are consistent with existing in vivo results.  相似文献   
998.
During apoptosis of human glioma cells induced by anti-Fas antibody, ceramide formation with activation of acid, but not neutral sphingomyelinase (SMase), was observed. A potent inhibitor of acid SMase, SR33557, effectively inhibited ceramide formation and apoptosis. Fas-induced apoptosis and ceramide formation proceeded regardless of p53 status. The agents, which modify intracellular levels of reactive oxygen species (ROS) and reduced glutathione (GSH), failed to modulate Fas-induced acid SMase activation and apoptosis. Moreover, expression of functional p53 protein using a temperature-sensitive human p53val(138) induced ceramide generation by activation of neutral SMase but not acid SMase through ROS formation. Peptide inhibitors for caspases-8 (z-IETD-fmk) and -3 (z-DEVD-fmk) suppressed Fas-induced apoptosis. However, activation of acid SMase was inhibited only by z-IETD-fmk. Thus, ceramide generated by acid SMase may take a part in Fas-induced apoptosis of human glioma cells and acid SMase activation may be dependent on caspase-8 activation, but not on p53 nor ROS.  相似文献   
999.
Acetogens reduce CO2 to acetate via the acetyl-CoA pathway and have been classically thought of as obligately anaerobic bacteria. Nearly 100 acetogenic species from 20 different genera have been isolated to date. These isolates are able to use very diverse electron donors and acceptors, and it is thus very likely that the in situ activities of acetogens are very diverse and not restricted to acetogenesis. Since acetogens constitute a very phylogenetically diverse bacteriological group, it should be anticipated that they can inhabit, and have impact on, diverse habitats. Indeed, they have been isolated from a broad range of habitats, including oxic soils and other habitats not generally regarded as suitable for acetogens. Although the ecological impact of acetogens is determined by the in situ manifestation of their physiological potentials, assessing their in situ activities is difficult due to their physiological and phylogenetic diversities. This mini-review will highlight a few of the physiological and ecological realities of acetogens, and will focus on: (i) metabolic diversities and regulation, (ii) phylogenetic diversity and molecular ecology, and (iii) the capacity of acetogens to cope with oxic conditions under both laboratory and in situ conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
1000.
Escherichia coli, lacking cytoplasmic superoxide dismutases, exhibits a variety of oxygen-dependent phenotypic deficits. Enrichment of the growth medium with Mn(II) relieved those deficits. Extracts of cells grown on Mn(II)-rich medium exhibited superoxide dismutase-like activity that was due partially to low-molecular-weight and partially to high-molecular-weight complexes. The high-molecular-weight activity was sensitive to proteolysis. Hence this activity is likely associated with low-affinity binding of Mn to proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号