首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: the penicillin G acylase as enzyme model
Authors:Travascio P  Zito E  De Maio A  Schroën C G P H  Durante D  De Luca P  Bencivenga U  Mita D G
Institution:International Institute of Genetics and Biophysics of CNR, Via G. Marconi 12, 80125 Naples, Italy.
Abstract:A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.
Keywords:antibiotics  cephalexin  enzymatic synthesis  grafted nylon membranes  immobilized enzymes  non‐isothermal bioreactor  penicillin G acylase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号