首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3835篇
  免费   410篇
  国内免费   448篇
  2024年   12篇
  2023年   169篇
  2022年   161篇
  2021年   338篇
  2020年   245篇
  2019年   312篇
  2018年   213篇
  2017年   191篇
  2016年   170篇
  2015年   196篇
  2014年   274篇
  2013年   306篇
  2012年   176篇
  2011年   209篇
  2010年   171篇
  2009年   242篇
  2008年   251篇
  2007年   208篇
  2006年   153篇
  2005年   120篇
  2004年   111篇
  2003年   79篇
  2002年   67篇
  2001年   61篇
  2000年   24篇
  1999年   32篇
  1998年   38篇
  1997年   25篇
  1996年   18篇
  1995年   24篇
  1994年   20篇
  1993年   16篇
  1992年   16篇
  1991年   8篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4693条查询结果,搜索用时 15 毫秒
51.
《Current biology : CB》2020,30(14):2777-2790.e4
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   
52.
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2‐517), which carries the male sterility (ms1035) gene, and its wild‐type (VF‐11) using isobaric tags for relative and absolute quantification‐based strategy. A total of 8272 proteins are quantified in the 2–517 and VF‐11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω‐carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real‐time PCR (qRT‐PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.  相似文献   
53.
LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA‐miRNA interactions from CLIP‐seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA‐miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA‐miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k‐fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2‐fold, 5‐fold and 10‐fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA‐miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding RNA regulation network that lncRNA and miRNA are involved in.  相似文献   
54.
55.
Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species’ functional roles in bird–plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird–plant interactions involving birds feeding only on‐the‐tree or both on and under‐the‐tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under‐the‐tree. Moreover, bird–plant interactions associated with large‐seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on‐the‐tree and shared birds contributed more to metanetwork organisation whereas under‐the‐tree birds were more involved in local processes. We would expect that species’ roles in the metanetwork will translate into different conservation values for maintaining functioning of seed‐dispersal networks.  相似文献   
56.
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non‐human primates and humans. To move the field forward and carry out both within‐ and among‐species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.  相似文献   
57.
Abstract

The present study demonstrates a comparative analysis between the artificial neural network (ANN) and response surface methodology (RSM) as optimization tools for pretreatment and enzymatic hydrolysis of lignocellulosic rice straw. The efficacy for both the processes, that is, pretreatment and enzymatic hydrolysis was evaluated using correlation coefficient (R2) & mean squared error (MSE). The values of R2 obtained by ANN after training, validation, and testing were 1, 0.9005, and 0.997 for pretreatment and 0.962, 0.923, and 0.9941 for enzymatic saccharification, respectively. On the other hand, the R2 values obtained with RSM were 0.9965 for cellulose recovery and 0.9994 for saccharification efficiency. Thus, ANN and RSM together successfully identify the substantial process conditions for rice straw pretreatment and enzymatic saccharification. The percentage of error for ANN and RSM were 0.009 and 0.01 for cellulose recovery and for 0.004 and 0.005 for saccharification efficiency, respectively, which showed the authority of ANN in exemplifying the non-linear behavior of the system.  相似文献   
58.
Multilocus genomic data sets can be used to infer a rich set of information about the evolutionary history of a lineage, including gene trees, species trees, and phylogenetic networks. However, user‐friendly tools to run such integrated analyses are lacking, and workflows often require tedious reformatting and handling time to shepherd data through a series of individual programs. Here, we present a tool written in Python—TREEasy—that performs automated sequence alignment (with MAFFT), gene tree inference (with IQ‐Tree), species inference from concatenated data (with IQ‐Tree and RaxML‐NG), species tree inference from gene trees (with ASTRAL, MP‐EST, and STELLS2), and phylogenetic network inference (with SNaQ and PhyloNet). The tool only requires FASTA files and nine parameters as inputs. The tool can be run as command line or through a Graphical User Interface (GUI). As examples, we reproduced a recent analysis of staghorn coral evolution, and performed a new analysis on the evolution of the “WGD clade” of yeast. The latter revealed novel patterns that were not identified by previous analyses. TREEasy represents a reliable and simple tool to accelerate research in systematic biology ( https://github.com/MaoYafei/TREEasy ).  相似文献   
59.
The pulse of the tree (diurnal cycle of stem radius fluctuations) has been widely studied as a way of analyzing tree responses to the environment, including the phenotypic plasticity of tree–water relationships in particular. However, the genetic basis of this daily phenotype and its interplay with the environment remain largely unexplored. We characterized the genetic and environmental determinants of this response, by monitoring daily stem radius fluctuation (dSRF) on 210 trees from a Eucalyptus urophylla × E. grandis full‐sib family over 2 years. The dSRF signal was broken down into hydraulic capacitance, assessed as the daily amplitude of shrinkage (DA), and net growth, estimated as the change in maximum radius between two consecutive days (ΔR). The environmental determinants of these two traits were clearly different: DA was positively correlated with atmospheric variables relating to water demand, while ΔR was associated with soil water content. The heritability for these two traits ranged from low to moderate over time, revealing a time‐dependent or environment‐dependent complex genetic determinism. We identified 686 and 384 daily quantitative trait loci (QTL) representing 32 and 31 QTL regions for DA and ΔR, respectively. The identification of gene networks underlying the 27 major genomics regions for both traits generated additional hypotheses concerning the biological mechanisms involved in response to water demand and supply. This study highlights that environmentally induced changes in daily stem radius fluctuation are genetically controlled in trees and suggests that these daily responses integrated over time shape the genetic architecture of mature traits.  相似文献   
60.
转基因玉米是最重要的转基因主粮作物之一,其转基因技术具有一定的代表性。为了更好地了解和掌握玉米转基因技术领域研发主体合作情况,文章构建了基于专利权人合作网络的目标技术领域专利权人合作态势分析框架,并基于社会网络分析方法与技术,以世界范围内的转基因玉米领域的重要专利权人为分析对象,构建合作网络、分析整体合作特征、挖掘合作子网、探测领域内重要专利权人,从而从宏观、中观和微观三个层面客观展现玉米转基因技术领域专利权人合作态势,为科技战略规划提供一定的决策支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号