首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L?1 for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL?1 were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.  相似文献   

2.
This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5–2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2SO4). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.  相似文献   

3.
Abstract

Mild alkaline pretreatment was evaluated as a strategy for effective lignin removal and hydrolysis of rice straw. The pretreatment efficiency of different NaOH concentrations (0.5, 1.0, 1.5 or 2.0% w/w) was assessed. Rice straw (RS) pretreated with 1.5% NaOH achieved better sugar yield compared to other concentrations used. A cellulose conversion efficiency of 91% (45.84?mg/ml glucose release) was attained from 1.5% NaOH pretreated rice straw (PRS), whereas 1% NaOH pretreated rice straw yielded 35.10?mg/ml of glucose corresponding to a cellulose conversion efficiency of 73.81%. The ethanol production from 1% and 1.5% NaOH pretreated RS hydrolysates was similar at ~3.3% (w/v), corresponding to a fermentation efficiency of 86%. The non-detoxified hydrolysate was fermented using the novel yeast strain Saccharomyces cerevisiae RPP-03O without any additional supplementation of nutrients.  相似文献   

4.

Background

The genetic modification of plant cell walls has been considered to reduce lignocellulose recalcitrance in bioenergy crops. As a result, it is important to develop a precise and rapid assay for the major wall polymer features that affect biomass saccharification in a large population of transgenic plants. In this study, we collected a total of 246 transgenic rice plants that, respectively, over-expressed and RNAi silenced 12 genes of the OsGH9 and OsGH10 family that are closely associated with cellulose and hemicellulose modification. We examined the wall polymer features and biomass saccharification among 246 transgenic plants and one wild-type plant. The samples presented a normal distribution applicable for statistical analysis and NIRS modeling.

Results

Among the 246 transgenic rice plants, we determined largely varied wall polymer features and the biomass enzymatic saccharification after alkali pretreatment in rice straws, particularly for the fermentable hexoses, ranging from 52.8 to 95.9%. Correlation analysis indicated that crystalline cellulose and lignin levels negatively affected the hexose and total sugar yields released from pretreatment and enzymatic hydrolysis in the transgenic rice plants, whereas the arabinose levels and arabinose substitution degree (reverse xylose/arabinose ratio) exhibited positive impacts on the hexose and total sugars yields. Notably, near-infrared spectroscopy (NIRS) was applied to obtain ten equations for predicting biomass enzymatic saccharification and seven equations for distinguishing major wall polymer features. Most of the equations exhibited high R 2/R 2 cv/R 2 ev and RPD values for a perfect prediction capacity.

Conclusions

Due to large generated populations of transgenic rice lines, this study has not only examined the key wall polymer features that distinctively affect biomass enzymatic saccharification in rice but has also established optimal NIRS models for a rapid and precise screening of major wall polymer features and lignocellulose saccharification in biomass samples. Importantly, this study has briefly explored the potential roles of a total of 12 OsGH9 and OsGH10 genes in cellulose and hemicellulose modification and cell wall remodeling in transgenic rice lines. Hence, it provides a strategy for genetic modification of plant cell walls by expressing the desired OsGH9 and OsGH10 genes that could greatly improve biomass enzymatic digestibility in rice.
  相似文献   

5.
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8–21.8% of pretreated rice straw, which was less than the 23.1–26.5% of pretreated bagasse and the 21.5–24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g?1 DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw; this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of β-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin.  相似文献   

6.
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm?1 due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g?1 and 0.379 g g?1, respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g?1 and 0.358 g g?1, respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.  相似文献   

7.
Response surface methodology (RSM) and artificial neural network (ANN) were used to optimize the effect of four independent variables, viz. glucose, sodium chloride (NaCl), temperature and induction time, on lipase production by a recombinant Escherichia coli BL21. The optimization and prediction capabilities of RSM and ANN were then compared. RSM predicted the dependent variable with a good coefficient of correlation determination (R 2) and adjusted R 2 values for the model. Although the R 2 value showed a good fit, absolute average deviation (AAD) and root mean square error (RMSE) values did not support the accuracy of the model and this was due to the inferiority in predicting the values towards the edges of the design points. On the other hand, ANN-predicted values were closer to the observed values with better R 2, adjusted R 2, AAD and RMSE values and this was due to the capability of predicting the values throughout the selected range of the design points. Similar to RSM, ANN could also be used to rank the effect of variables. However, ANN could not predict the interactive effect between the variables as performed by RSM. The optimum levels for glucose, NaCl, temperature and induction time predicted by RSM are 32 g/L, 5 g/L, 32°C and 2.12 h, and those by ANN are 25 g/L, 3 g/L, 30°C and 2 h, respectively. The ANN-predicted optimal levels gave higher lipase activity (55.8 IU/mL) as compared to RSM-predicted levels (50.2 IU/mL) and the predicted lipase activity was also closer to the observed data at these levels, suggesting that ANN is a better optimization method than RSM for lipase production by the recombinant strain.  相似文献   

8.
Yao RS  Hu HJ  Deng SS  Wang H  Zhu HX 《Bioresource technology》2011,102(10):6340-6343
In this paper, a sulfur trioxide collaborative dilutes alkali method has been developed to pre-treat rice straw and it has been studied that the pre-treated rice straw structure affected the saccharification of the rice straw hydrolyzed by cellulose enzymatic hydrolysis. The results show that the reaction of the sulfur trioxide with rice straw resulted in the internal micro-thermal explosion, and the saccharification rate was 91% based on the pretreated rice straw with sulfur trioxide for 4h following 1% w/v NaOH treatment for 7h at 50°C.  相似文献   

9.
Abstract

Apple pomace was explored as alternative feedstock for producing bacterial cellulose (BC) by Gluconacetobacter xylinus following a cellulase saccharification performed after pretreatment of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). The dissolving process of apple pomace cellulose was observed by polarized light microscopy (PLM). As FT-IR and XRD results demonstrated, the IL pretreatment proved to be a physical process and no changes in the crystalline structure occurred during the pretreatment. However, the SEM result showed that more fissures and breakages appeared on the surface of pomace microfibers after IL-pretreating, which increased the contact area with cellulase and improved the enzymatic hydrolysis efficiency. An enhancing effect on the BC yield has been observed, 27% higher yield of BC obtained from hydrolysate as compared to sucrose-based medium indicates efficiency of IL-treated apple pomace to serve as high quality feedstock in BC production.  相似文献   

10.
Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %.  相似文献   

11.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

12.
Seventeen Cyathus stercoreus isolates were tested for their ability to treat rice straw for improved enzymatic saccharification. These isolates showed a negative correlation between cellulase and xylanase activity and enzymatic saccharification yields. Incubation of rice straw pretreated at 60 °C for 15 min with strain C. stercoreus TY-2 for 25 days resulted in an enzymatic saccharification yield of 57% as compared to a yield of 11% for the same straw in the absence of the fungus. These findings highlight the potential of this isolate for biological pretreatment of rice straw under conditions of low energy input.  相似文献   

13.
Soft carbohydrates, defined as readily-recoverable carbohydrates via mere extraction from the biomass or brief enzymatic saccharification, were found in significant amounts in rice straw as forms of free glucose, free fructose, sucrose, starch, and β-1,3-1,4-glucan. In this study, we investigated their amounts in rice straw (defined as culm and leaf sheath), and developed an easy method for glucose and fructose recovery from them with heat-pretreatment and subsequent 4-h enzymatic saccharification with an enzyme cocktail of cellulase and amyloglucosidase. The recovery of glucose and fructose exhibited good correlation with the amounts of soft carbohydrates. The maximum yields of glucose and fructose in the rice straw per dry weight at the heading stage and the mature stage were 43.5% in cv. Habataki and 34.1% in cv. Leafstar. Thus, rice straw with soft carbohydrates can be regarded as a novel feedstock for economically feasible production of readily-fermentable glucose and fructose for bioethanol.  相似文献   

14.
Cholinium amino acids ionic liquids ([Ch][AA] ILs), a novel type of bio‐ILs that can easily be prepared from renewable biomaterials, were investigated for pretreatment of rice straw by selective extraction of lignin from this abundant lignocellulosic biomass material. Of the eight ILs examined, most were demonstrated to be excellent pretreatment solvents. Upon pretreatment using these ILs, the initial saccharification rates of rice straw residues were substantially improved as well as the extent to which polysaccharides could be digested (>90% for cellulose and >60% for xylan). Enzymatic hydrolysis of pretreated rice straw by Trichoderma reesei cellulase/xylanase furnished glucose and xylose with the yields in excess of 80% and 30%, respectively. Detailed spectroscopic characterization showed that the enhancement of polysaccharides degestibility derived mainly from delignification rather than changes in cellulose crystallinity. The yields of fermentable reducing sugars were significantly improved after individual optimization of pretreatment temperature and duration. With [Ch][Lys] as the solvent, the sugar yields of 84.0% for glucose and 42.1% for xylose were achieved after pretreatment at 90°C for 5 h. The IL [Ch][Lys] showed excellent reusability across five successive batches in pretreatment of rice straw. These bio‐ILs performed as well as or better than previously investigated non‐renewable ILs, and thus present a new and environmentally friendly way to pretreat lignocellulose for production of fermentable sugars and total utilization of the biomass. Biotechnol. Bioeng. 2012; 109: 2484–2493. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
本论文探讨了不同浓度的稀H_2SO_4和稀NaOH预处理对大豆秸秆、水稻秸秆、象草和狼尾草四种不同生物质酶解制备还原糖的影响。结果表明,大豆秸秆、水稻秸秆、象草和狼尾草具有较高的纤维素和半纤维素含量,是制备还原糖的理想原料。与稀H_2SO_4预处理相比,经稀NaOH预处理后的样品表现出较好的酶解性能。通过使用4%的NaOH对大豆秸秆和狼尾草进行预处理,还原糖产量分别为145.8 mg/mL和319.2 mg/mL。此外,以1%NaOH预处理后的水稻秸秆和象草为原料,可以分别获得385.2 mg/mL和231.6 mg/mL还原糖产量。  相似文献   

16.
Ethanol production from lignocellulosic raw materials includes a pretreatment step before enzymatic hydrolysis (EH). Pretreated substrates contain complex hemicelluloses in the solid fraction that can protect the cellulose from enzymatic attack. In addition, soluble xylooligomers are contained in the pretreated materials and may have an inhibitory effect on cellulase activity. In this context, several approaches for xylanase supplementation have been studied to increase EH yields. In this study, the whole slurry obtained after steam explosion pretreatment of wheat straw has been used as substrate. EH experiments were performed using commercial cellulase preparations supplemented with an endoxylanase (XlnC) from Aspergillus nidulans. Among different strategies of XlnC supplementation, the 24‐h xylanase treatment before cellulase addition yielded an increase of 40.1 and 10.1% in glucose and xylose production, respectively. Different XlnC addition strategies were integrated in a simultaneous saccharification and cofermentation process (SSCF) using the xylose fermenting strain Saccharomyces cerevisiae F12. Ethanol production in SSCF was 28.4% higher when comparing to a simultaneous saccharification and fermentation process. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

17.
Enhanced enzymatic saccharification of rice straw by microwave pretreatment   总被引:1,自引:0,他引:1  
Ma H  Liu WW  Chen X  Wu YJ  Yu ZL 《Bioresource technology》2009,100(3):1279-1284
In this study, Box-Behnken design and response surface methodology were employed to plan experiments and optimize the microwave pretreatment of rice straw. Experimental results show that microwave intensity (MI), irradiation time (IT) and substrate concentration (SC) were main factors governing the enzymatic saccharification of rice straw. The maximal efficiencies of cellulose, hemicellulose and total saccharification were respectively increased by 30.6%, 43.3% and 30.3% under the optimal conditions of MI 680 W, IT 24 min and SC 75 g/L. The chemical composition analysis of straw further confirmed that microwave pretreatment could disrupt the silicified waxy surface, break down the lignin-hemicellulose complex and partially remove silicon and lignin.  相似文献   

18.
Cellulase, Tween 80, and β-glucosidase loading were studied and optimized by response surface methodology to improve saccharification. Microwave alkali-pretreated rice straw used as substrate for onsite enzyme production by Aspergillus heteromorphus and Trichoderma reesei. The highest enzymatic hydrolysis (84%) was obtained from rice straw at crude enzyme loading of 10 FPU/gds of cellulase, 0.15% Tween 80, and 100 international unit/g dry solids of β-glucosidase activities. Enzymatic hydrolyzate of pretreated rice straw was used for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis, and by co-culture of both. The yield of ethanol was 0.50, 0.47, and 0.48 gp/gs by S. cerevisiae, S. stipitis, and by co-culture, respectively, using pretreated rice straw hydrolyzate. The co-culture of S. cerevisiae and S. stipitis produced 25% more ethanol than S. cerevisiae alone and 31% more ethanol than S. stipitis alone. During anaerobic fermentation 65.08, 36.45, and 50.31 μmol/ml CO2 released by S. cerevisiae, S. stipitis, and by co-culture, respectively. The data indicated that saccharification efficiency using optimized crude enzyme cocktail was good, and enzymatic hydrolyzate could be fermented to produce ethanol.  相似文献   

19.
We improved the CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature (RT). We firstly optimized the RT-lime pretreatment for the lignocellulosic part. When the ratio of lime/dry-biomass was 0.2 (w/w), the RT lime-pretreatment for 7-d resulted in an effect on the enzymatic saccharification of cellulose and xylan equivalent to that of the pretreatment at 120°C for 1h. Sucrose, starch and β-1,3-1,4-glucan, which could be often detected in rice straw, were mostly stable under the RT-lime pretreatment condition. Then, the pretreatment condition in the conventional CaCCO process was modified by the adaptation of the optimized RT lime-pretreatment, resulting in significantly better carbohydrate recoveries via enzymatic saccharification than those of the CaCCO process (120°C for 1 h). Thus, the improved CaCCO process (the RT-CaCCO process) could preserve/pretreat the feedstock at RT in a wet form with minimum loss of carbohydrates.  相似文献   

20.
This study aims to establish a cellulose pretreatment process using ionic liquids (ILs) for efficient enzymatic hydrolysis. The IL 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM]DEP) was selected in view of its low viscous and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from wheat straw pretreated with this IL at 130 °C for 30 min reached 54.8% after being enzymatically hydrolyzed for 12 h. Wheat straw regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated wheat straw, was evaluated using Saccharomyces cerevisiae. This microbe could ferment glucose efficiently, and the ethanol production was 0.43 g/g glucose within 26 h. In conclusion, the IL [EMIM]DEP shows promise as pretreatment solvent for wheat straw, although its cost should be reduced and in-depth exploration of this subject is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号