首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   72篇
  国内免费   179篇
  2023年   8篇
  2022年   12篇
  2021年   19篇
  2020年   22篇
  2019年   24篇
  2018年   33篇
  2017年   26篇
  2016年   24篇
  2015年   34篇
  2014年   17篇
  2013年   43篇
  2012年   20篇
  2011年   28篇
  2010年   18篇
  2009年   35篇
  2008年   26篇
  2007年   38篇
  2006年   46篇
  2005年   36篇
  2004年   40篇
  2003年   32篇
  2002年   38篇
  2001年   32篇
  2000年   20篇
  1999年   31篇
  1998年   30篇
  1997年   18篇
  1996年   25篇
  1995年   25篇
  1994年   30篇
  1993年   18篇
  1992年   32篇
  1991年   13篇
  1990年   22篇
  1989年   16篇
  1988年   14篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   7篇
  1982年   7篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1001条查询结果,搜索用时 31 毫秒
111.
Fluctuating soil redox regimes may facilitate the co-occurrence of microbial nitrogen transformations with significantly different sensitivities to soil oxygen availability. In an upland humid tropical forest, we explored the impact of fluctuating redox regimes on gross nitrogen cycling rates and microbial community composition. Our results suggest that the rapidly fluctuating redox conditions that characterize these upland soils allow anoxic and oxic N processing to co-occur. Gross nitrogen mineralization was insensitive to soil redox fluctuations. In contrast, nitrifiers in this soil were directly affected by low redox periods, yet retained some activity even after 3–6 weeks of anoxia. Dissimilatory nitrate reduction to ammonium (DNRA) was less sensitive to oxygen exposure than expected, indicating that the organisms mediating this reductive process were also tolerant of unfavorable (oxic) conditions. Denitrification was a stronger sink for NO3 in consistently anoxic soils than in variable redox soils. Microbial biomass and community composition were maintained with redox fluctuation, but biomass decreased and composition changed under static oxic and anoxic soil regimes. Bacterial community structure was significantly correlated with rates of nitrification, denitrification and DNRA, suggesting that redox-control of soil microbial community structure was an important determinant of soil N-cycling rates. Specific nitrogen cycling functional groups in this environment (such as nitrifiers, DNRA organisms, and denitrifiers) appear to have adapted to nutrient resources that are spatially and temporally variable. In soils where oxygen is frequently depleted and re-supplied, characteristics of microbial tolerance and resilience can frame N cycling patterns.  相似文献   
112.
An 1800-km South to North transect (N 53°43′ to 69°43′) through Western Siberia was established to study the interaction of nitrogen and carbon cycles. The transect comprised all major vegetation zones from steppe, through taiga to tundra and corresponded to a natural temperature gradient of 9.5°C mean annual temperature (MAT). In order to elucidate changes in the control of C and N cycling along this transect, we analyzed physical and chemical properties of soils and microbial structure and activity in the organic and in the mineral horizons, respectively. The impact of vegetation and climate exerted major controls on soil C and N pools (e.g., soil organic matter, total C and dissolved inorganic nitrogen) and process rates (gross N mineralization and heterotrophic respiration) in the organic horizons. In the mineral horizons, however, the impact of climate and vegetation was less pronounced. Gross N mineralization rates decreased in the organic horizons from south to north, while remaining nearly constant in the mineral horizons. Especially, in the northern taiga and southern tundra gross nitrogen mineralization rates were higher in the mineral compared to organic horizons, pointing to strong N limitation in these biomes. Heterotrophic respiration rates did not exhibit a clear trend along the transect, but were generally higher in the organic horizon compared to mineral horizons. Therefore, C and N mineralization were spatially decoupled at the northern taiga and tundra. The climate change implications of these findings (specifically for the Arctic) are discussed.  相似文献   
113.
Lack of synchronization between N released from prunings applied to the soil as green manures and crop uptake as well as optimization of protein digestibility for ruminants, remain major research objectives for the selection of multipurpose tree and shrub legumes (MPT) for mixed smallholder systems in the tropics. Prunings of the high tannin, low quality MPT Calliandra houstoniana CIAT 20400 (Calliandra) and the tannin free, high quality MPT Indigofera zollingeriana (Indigofera) were mixed in the proportions 100:0, 75:25, 50:50, 25:75, and 0:100 (w/w) in order to measure the aerobic rate and extent of N release in a leaching tube experiment, and the anaerobic extent of N degradation in an in vitro gas production experiment. Parameters measured in Calliandra:Indigofera mixtures were compared to theoretical values derived from single species plant material (i.e. 100:0 and 0:100). Aerobic N release and apparent anaerobic N degradation increased with increasing proportion of the high quality legume (Indigofera) in the mixture. While N release in the soil was lower than theoretical values in the mixture 50% Calliandra/50% Indigofera, this was not the case with apparent anaerobic N degradation with the same mixture. Aerobic N immobilization was more pronounced for the mixture 75% Calliandra/25% Indigofera than for 100% Calliandra and negative interaction was observed with apparent anaerobic N degradation in the mixture 75% Calliandra/25% Indigofera. Plant quality parameters that best correlated with aerobic N release and apparent anaerobic N degradation in the rumen were lignin + bound condensed tannins (r=−0.95 and −0.95 respectively, P<0.001). In addition, a positive correlation (r=0.89, P<0.001) was found between aerobic N release in the leaching tube experiment and apparent N degradation in the in vitro anaerobic gas production experiment. Results show that mixing prunings of MPT materials with contrasting quality is an effective way to modify aerobic N release pattern as well as apparent anaerobic N degradation and could possibly be applied to minimize N losses in the rumen and in the soil. In addition, apparent anaerobic N degradation was identified as good predictor of aerobic N release in the soil, which has resource saving implications when screening MTP to be used as green manures.  相似文献   
114.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   
115.
Vitamin D physiology   总被引:1,自引:0,他引:1  
  相似文献   
116.
采用15N库稀释-原位培养法研究了硝化抑制剂DCD、DMPP对华北盐碱性褐土氮总矿化速率和硝化速率的影响.试验在山西省运城市种植玉米的盐碱性土壤上进行,设单施尿素、尿素+DCD、尿素+DMPP 3个处理.结果表明:施肥后2周,DCD、DMPP分别使氮总矿化速率和氮总硝化速率减少了25.5%、7.3%和60.3%、59.1%,DCD对氮总矿化速率的影响显著高于DMPP,两者对氮总硝化速率的影响无显著差异;而在施肥后7周,不同硝化抑制剂对氮总硝化速率的影响存在差异.施肥后2周,3个处理的土壤氮总矿化速率和硝化速率分别是施肥前的7.2 ~10.0倍和5.5 ~21.5倍;NH4+和NO3-消耗速率分别是施肥前的9.1 ~12.2倍和5.1 ~8.4倍,这是由氮肥对土壤的激发效应所致.硝化抑制剂使氮肥更多地以NH4+形式保持在土壤中,减少了NO3-的积累.土壤氮总矿化速率和总硝化速率受硝化抑制剂的抑制是N2O减排的主要原因.  相似文献   
117.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   
118.
Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.  相似文献   
119.
川中人工纯柏林凋落物分解动态研究   总被引:2,自引:0,他引:2  
田茂洁 《生态学杂志》2005,24(10):1147-1150
对柏木人工纯林的渊落物有机碳和一些营养元素的分解和释放过程的研究表明,柏木凋落物中有机碳和营养元素的矿化非常缓慢,凋落物有机碳的半减期是33周,氮素矿化半减期是433周,磷矿化半减期是10周,钾矿化半减期是24周,钙矿化半减期是86周,镁矿化半减期是12周。柏木早期生长缓慢、成林困难主要是受氮素不足的制约。在林分改造和营林中适当增加阔叶速生树种,改善凋落物性质.对促进凋落物分解和养分周转、改善土壤养分状况、提高柏木人工林的生态和经济效益是很必要的。  相似文献   
120.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号